OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit

Bernhard Baumann, WooJhon Choi, Benjamin Potsaid, David Huang, Jay S. Duker, and James G. Fujimoto  »View Author Affiliations


Optics Express, Vol. 20, Issue 9, pp. 10229-10241 (2012)
http://dx.doi.org/10.1364/OE.20.010229


View Full Text Article

Enhanced HTML    Acrobat PDF (3220 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Polarization sensitive optical coherence tomography (PS-OCT) is a functional imaging method that provides additional contrast using the light polarizing properties of a sample. This manuscript describes PS-OCT based on ultrahigh speed swept source / Fourier domain OCT operating at 1050nm at 100kHz axial scan rates using single mode fiber optics and a multiplexing approach. Unlike previously reported PS-OCT multiplexing schemes, the method uses a passive polarization delay unit and does not require active polarization modulating devices. This advance decreases system cost and avoids complex synchronization requirements. The polarization delay unit was implemented in the sample beam path in order to simultaneously illuminate the sample with two different polarization states. The orthogonal polarization components for the depth-multiplexed signals from the two input states were detected using dual balanced detection. PS-OCT images were computed using Jones calculus. 3D PS-OCT imaging was performed in the human and rat retina. In addition to standard OCT images, PS-OCT images were generated using contrast form birefringence and depolarization. Enhanced tissue discrimination as well as quantitative measurements of sample properties was demonstrated using the additional contrast and information contained in the PS-OCT images.

© 2012 OSA

OCIS Codes
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: February 8, 2012
Revised Manuscript: April 3, 2012
Manuscript Accepted: April 14, 2012
Published: April 19, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Bernhard Baumann, WooJhon Choi, Benjamin Potsaid, David Huang, Jay S. Duker, and James G. Fujimoto, "Swept source / Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit," Opt. Express 20, 10229-10241 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-20-9-10229


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B9(6), 903–908 (1992). [CrossRef]
  2. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett.22(12), 934–936 (1997). [CrossRef] [PubMed]
  3. S. M. Srinivas, J. F. de Boer, H. Park, K. Keikhanzadeh, H. E. L. Huang, J. Zhang, W. Q. Jung, Z. P. Chen, and J. S. Nelson, “Determination of burn depth by polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 207–212 (2004). [CrossRef] [PubMed]
  4. J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, “Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma,” J. Biomed. Opt.9(2), 292–298 (2004). [CrossRef] [PubMed]
  5. P. O. Bagnaninchi, Y. Yang, M. Bonesi, G. Maffulli, C. Phelan, I. Meglinski, A. El Haj, and N. Maffulli, “In-depth imaging and quantification of degenerative changes associated with Achilles ruptured tendons by polarization-sensitive optical coherence tomography,” Phys. Med. Biol.55(13), 3777–3787 (2010). [CrossRef] [PubMed]
  6. M. Pircher, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Polarization sensitive optical coherence tomography in the human eye,” Prog. Retin. Eye Res.30(6), 431–451 (2011). [CrossRef] [PubMed]
  7. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, “Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT,” Opt. Express12(24), 5940–5951 (2004). [CrossRef] [PubMed]
  8. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  9. C. Ahlers, E. Götzinger, M. Pircher, I. Golbaz, F. Prager, C. Schütze, B. Baumann, C. K. Hitzenberger, and U. Schmidt-Erfurth, “Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(4), 2149–2157 (2010). [CrossRef] [PubMed]
  10. B. Baumann, E. Götzinger, M. Pircher, H. Sattmann, C. Schütze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15(6), 061704 (2010). [CrossRef] [PubMed]
  11. B. Cense, T. C. Chen, B. H. Park, M. C. Pierce, and J. F. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.45(8), 2606–2612 (2004). [CrossRef] [PubMed]
  12. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, and C. K. Hitzenberger, “Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison,” J Biophoton.1(2), 129–139 (2008). [CrossRef] [PubMed]
  13. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt.13(1), 014013 (2008). [CrossRef] [PubMed]
  14. E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 94–102 (2004). [CrossRef] [PubMed]
  15. A. Miyazawa, M. Yamanari, S. Makita, M. Miura, K. Kawana, K. Iwaya, H. Goto, and Y. Yasuno, “Tissue discrimination in anterior eye using three optical parameters obtained by polarization sensitive optical coherence tomography,” Opt. Express17(20), 17426–17440 (2009). [CrossRef] [PubMed]
  16. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  17. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  18. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  19. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express16(19), 15149–15169 (2008). [CrossRef] [PubMed]
  20. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  21. W. Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, and B. E. Bouma, “>400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett.35(17), 2919–2921 (2010). [CrossRef] [PubMed]
  22. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  23. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Express18(14), 14685–14704 (2010). [CrossRef] [PubMed]
  24. V. Jayaraman, J. Jiang, H. Li, P. J. S. Heim, G. D. Cole, B. Potsaid, J. G. Fujimoto, and A. Cable, “OCT imaging up to 760 kHz axial scan rate using single-mode 1310nm MEMS-tunable VCSELs with >100nm tuning range,” in Lasers and Electro-Optics (CLEO),2011Conference on, 2011), 1–2.
  25. J. Zhang, W. Jung, J. S. Nelson, and Z. Chen, “Full range polarization-sensitive Fourier domain optical coherence tomography,” Opt. Express12(24), 6033–6039 (2004). [CrossRef] [PubMed]
  26. M. K. Al-Qaisi and T. Akkin, “Swept-source polarization-sensitive optical coherence tomography based on polarization-maintaining fiber,” Opt. Express18(4), 3392–3403 (2010). [CrossRef] [PubMed]
  27. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express16(8), 5892–5906 (2008). [CrossRef] [PubMed]
  28. W. Y. Oh, S. H. Yun, B. J. Vakoc, M. Shishkov, A. E. Desjardins, B. H. Park, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing,” Opt. Express16(2), 1096–1103 (2008). [CrossRef] [PubMed]
  29. P. Sharma, Y. Verma, K. D. Rao, and P. K. Gupta, “Single mode fiber based polarization sensitive optical coherence tomography using a swept laser source,” J. Opt.13(11), 115301 (2011). [CrossRef]
  30. K. H. Kim, B. H. Park, Y. P. Tu, T. Hasan, B. Lee, J. A. Li, and J. F. de Boer, “Polarization-sensitive optical frequency domain imaging based on unpolarized light,” Opt. Express19(2), 552–561 (2011). [CrossRef] [PubMed]
  31. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express9(13), 780–790 (2001). [CrossRef] [PubMed]
  32. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt.7(3), 350–358 (2002). [CrossRef] [PubMed]
  33. C. M. Fan, Y. Wang, and R. K. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express15(13), 7950–7961 (2007). [CrossRef] [PubMed]
  34. T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization-sensitive spectral-domain OCT by spatial frequency encoding,” Opt. Lett.35(2), 241–243 (2010). [CrossRef] [PubMed]
  35. S. G. Guo, J. Zhang, L. Wang, J. S. Nelson, and Z. P. Chen, “Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography,” Opt. Lett.29(17), 2025–2027 (2004). [CrossRef] [PubMed]
  36. B. Hyle Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components,” Opt. Lett.29(21), 2512–2514 (2004). [CrossRef] [PubMed]
  37. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express18(2), 854–876 (2010). [CrossRef] [PubMed]
  38. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  39. E. Götzinger, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography,” Opt. Express17(25), 22704–22717 (2009). [CrossRef] [PubMed]
  40. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express2(6), 1539–1552 (2011). [CrossRef] [PubMed]
  41. Z. H. Lu, D. K. Kasaragod, and S. J. Matcher, “Method to calibrate phase fluctuation in polarization-sensitive swept-source optical coherence tomography,” J. Biomed. Opt.16(7), 070502 (2011). [CrossRef] [PubMed]
  42. G. J. Liu, J. Zhang, L. F. Yu, T. Q. Xie, and Z. P. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt.48(32), 6365–6370 (2009). [CrossRef] [PubMed]
  43. R. N. Weinreb, A. W. Dreher, A. Coleman, H. Quigley, B. Shaw, and K. Reiter, “Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve fiber layer thickness,” Arch. Ophthalmol.108(4), 557–560 (1990). [CrossRef] [PubMed]
  44. Q. Li, A. M. Timmers, K. Hunter, C. Gonzalez-Pola, A. S. Lewin, D. H. Reitze, and W. W. Hauswirth, “Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse,” Invest. Ophthalmol. Vis. Sci.42(12), 2981–2989 (2001). [PubMed]
  45. N. Horio, S. Kachi, K. Hori, Y. Okamoto, E. Yamamoto, H. Terasaki, and Y. Miyake, “Progressive change of optical coherence tomography scans in retinal degeneration slow mice,” Arch. Ophthalmol.119(9), 1329–1332 (2001). [PubMed]
  46. T. Fukuchi, K. Takahashi, K. Shou, and M. Matsumura, “Optical coherence tomography (OCT) findings in normal retina and laser-induced choroidal neovascularization in rats,” Graefes Arch. Clin. Exp. Ophthalmol.239(1), 41–46 (2001). [CrossRef] [PubMed]
  47. V. J. Srinivasan, T. H. Ko, M. Wojtkowski, M. Carvalho, A. Clermont, S. E. Bursell, Q. H. Song, J. Lem, J. S. Duker, J. S. Schuman, and J. G. Fujimoto, “Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.47(12), 5522–5528 (2006). [CrossRef] [PubMed]
  48. M. Ruggeri, H. Wehbe, S. L. Jiao, G. Gregori, M. E. Jockovich, A. Hackam, Y. L. Duan, and C. A. Puliafito, “In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(4), 1808–1814 (2007). [CrossRef] [PubMed]
  49. L. Duan, S. Makita, M. Yamanari, Y. Lim, and Y. Yasuno, “Monte-Carlo-based phase retardation estimator for polarization sensitive optical coherence tomography,” Opt. Express19(17), 16330–16345 (2011). [CrossRef] [PubMed]
  50. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited