OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 6 — Jun. 27, 2013

The effects of multiple scattering to optical forces on a sphere in an evanescent field

Wei-Ping Zang, Yang Yang, Zhi-Yu Zhao, and Jian-Guo Tian  »View Author Affiliations

Optics Express, Vol. 21, Issue 10, pp. 12373-12384 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper we discuss the effects of multiple scattering to the optical forces on a particle by an evanescent field. We show that the iterative method to process the effects of the interaction between the particle and a plane surface is invalid when the radius of particle is large or when the structural resonance of the particle occurs. By using the generalized minimum residual method to solve the set of equations directly, the divergence appears in the iterative method can be removed completely. As an illustrative example, we discussed the effects of multiple scattering to optical forces on a particle in an evanescent field from an incident plane wave. The interpretations of numerical results are presented in detail.

© 2013 OSA

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

Original Manuscript: March 4, 2013
Revised Manuscript: March 31, 2013
Manuscript Accepted: May 3, 2013
Published: May 13, 2013

Virtual Issues
Vol. 8, Iss. 6 Virtual Journal for Biomedical Optics

Wei-Ping Zang, Yang Yang, Zhi-Yu Zhao, and Jian-Guo Tian, "The effects of multiple scattering to optical forces on a sphere in an evanescent field," Opt. Express 21, 12373-12384 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett.11(5), 288–290 (1986). [CrossRef] [PubMed]
  2. P. H. Jones, E. Stride, and N. Saffari, “Trapping and manipulation of microscopic bubbles with a scanning optical tweezer,” Appl. Phys. Lett.89(8), 081113 (2006). [CrossRef]
  3. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  4. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient Optical Trapping and Visualization of Silver Nanoparticles,” Nano Lett.8(5), 1486–1491 (2008). [CrossRef] [PubMed]
  5. S. Kawata and T. Sugiura, “Movement of micrometer-sized particles in the evanescent field of a laser beam,” Opt. Lett.17(11), 772–774 (1992). [CrossRef] [PubMed]
  6. E. Almaas and I. Brevik, “Radiation forces on a micrometer-sized sphere in an evanescent field,” J. Opt. Soc. Am. B12(12), 2429–2438 (1995). [CrossRef]
  7. S. Chang, J. H. Jo, and S. S. Lee, “Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam,” Opt. Commun.108(1-3), 133–143 (1994). [CrossRef]
  8. Y. Yang, W. P. Zang, Z. Y. Zhao, and J. G. Tian, “Optical forces on Mie particles in an Airy evanescent field,” Opt. Express20(23), 25681–25692 (2012). [CrossRef] [PubMed]
  9. J. Ng and C. T. Chan, “Size-selective optical forces for microspheres using evanescent wave excitation of whispering gallery modes,” Appl. Phys. Lett.92(25), 251109 (2008). [CrossRef]
  10. J. J. Xiao, J. Ng, Z. F. Lin, and C. T. Chan, “Whispering gallery mode enhanced optical force with resonant tunneling excitation in the Kretschmann geometry,” Appl. Phys. Lett.94(1), 011102 (2009).
  11. P. A. Bobbert and J. Vlieger, “Light scattering by a sphere on a substrate,” Physica (Utrecht)137A, 209–242 (1986).
  12. G. Videen, “Light scattering from a sphere on or near a surface: errata,” J. Opt. Soc. Am. A9, 844–845 (1992). [CrossRef]
  13. G. Videen, M. Aslan, and M. P. Mengüç, “Characterization of metallic nano-particles via surface wave scattering: A. Theoretical framework and formulation,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 195–206 (2005). [CrossRef]
  14. M. Aslan, M. P. Mengüç, and G. Videen, “Characterization of metallic nano-particles via surface wave scattering: B. Physical concept and numerical experiments,” J. Quant. Spectrosc. Radiat. Transf.93(1-3), 207–217 (2005). [CrossRef]
  15. E. Fucile, P. Denti, F. Borghese, R. Saija, and O. I. Sindoni, “Optical properties of a sphere in the vicinity of a plane surface,” J. Opt. Soc. Am. A14(7), 1505–1514 (1997). [CrossRef]
  16. T. Wriedt and A. Doicu, “Light scattering from a particle on or near a surface,” Opt. Commun.152(4-6), 376–384 (1998). [CrossRef]
  17. D. W. Mackowski, “A generalization of image theory to predict the interaction of multipole fields with plane surfaces,” J. Quant. Spectrosc. Radiat. Transf.111(5), 802–809 (2010). [CrossRef]
  18. D. W. Mackowski, “Exact solution for the scattering and absorption properties of sphere clusters on a plane surface,” J. Quant. Spectrosc. Radiat. Transf.109(5), 770–788 (2008). [CrossRef]
  19. S. Chang, J. T. Kim, J. H. Jo, and S. S. Lee, “Optical force on a sphere caused by the evanescent field of a Gaussian beam; effects of multiple scattering,” Opt. Commun.139(4-6), 252–261 (1997). [CrossRef]
  20. V. V. Varadan, A. Lakhtakia, and V. K. Varadan, “Field Representation and Introduction to Scattering,” North-Holland, 1991.
  21. W. Inami and Y. Kawata, “Photon force analysis for a spherical particle near a substrate illuminated by a tightly focused laser beam,” J. Appl. Phys.94(4), 2183–2187 (2003). [CrossRef]
  22. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys.64(4), 1632–1639 (1988). [CrossRef]
  23. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam,” J. Appl. Phys.66(10), 4594–4602 (1989). [CrossRef]
  24. J. P. Barton, W. Ma, S. A. Schaub, and D. R. Alexander, “Electromagnetic field for a beam incident on two adjacent spherical particles,” Appl. Opt.30(33), 4706–4715 (1991). [CrossRef] [PubMed]
  25. P. C. Chaumet and M. Nieto-Vesperinas, “Coupled dipole method determination of the electromagnetic force on a particle over a flat dielectric substrate,” Phys. Rev. B61(20), 14119–14127 (2000). [CrossRef]
  26. J. R. Arias-Gonzàlez and M. Nieto-Vesperinas, “Radiation pressure over dielectric and metallic nanocylinders on surfaces: polarization dependence and plasmon resonance conditions,” Opt. Lett.27(24), 2149–2151 (2002). [CrossRef] [PubMed]
  27. J. R. Arias-González and M. Nieto-Vesperinas, “Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A20(7), 1201–1209 (2003). [CrossRef] [PubMed]
  28. M. Nieto-Vesperinas and J. J. Saenz, “Optical forces from an evanescent wave on a magnetodielectric small particle,” Opt. Lett.35(23), 4078–4080 (2010). [CrossRef] [PubMed]
  29. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing (Wiley, 1985).
  30. P. W. Barber and S. C. Hill, Light Scattering by Particle: Computational Methods (World Scientific, 1990).
  31. A. Doicu, T. Wriedt, and Y. A. Eremin, Light Scattering by Systems of Particles: Null-Field Method with Discrete Sources: Theory and Programs (Springer, 2006).
  32. Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput.7(3), 856–869 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited