OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 7 — Aug. 1, 2013

Breaking Optical diffraction limitation using Optical Hybrid-Super-Hyperlens with Radially Polarized Light

Bo Han Cheng, Yung-Chiang Lan, and Din Ping Tsai  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14898-14906 (2013)
http://dx.doi.org/10.1364/OE.21.014898


View Full Text Article

Enhanced HTML    Acrobat PDF (1483 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and analyze an innovative device called “Hybrid-Super-Hyperlens”. This lens is made of two hyperbolic metamaterials with different signs in their dielectric tensor and different isofrequency dispersion curves. The ability of the proposed lens to break the optical diffraction limit is demonstrated using numerical simulations (with the resolution power of about λ/6). Both a pair of nano-slits and a nano-ring can be imaged and resolved by the proposed lens using the radially polarized light source. Such a lens has great potential applications in photolithography and real-time nanoscale imaging.

© 2013 OSA

OCIS Codes
(110.0180) Imaging systems : Microscopy
(160.1190) Materials : Anisotropic optical materials
(350.5730) Other areas of optics : Resolution
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: February 4, 2013
Revised Manuscript: March 1, 2013
Manuscript Accepted: March 5, 2013
Published: June 17, 2013

Virtual Issues
Vol. 8, Iss. 7 Virtual Journal for Biomedical Optics
Hyperbolic Metamaterials (2013) Optics Express

Citation
Bo Han Cheng, Yung-Chiang Lan, and Din Ping Tsai, "Breaking Optical diffraction limitation using Optical Hybrid-Super-Hyperlens with Radially Polarized Light," Opt. Express 21, 14898-14906 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-12-14898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Press, 1999).
  2. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express14(18), 8247–8256 (2006). [CrossRef] [PubMed]
  3. D. P. Tsai, H. E. Jackson, R. Reddick, S. Sharp, and R. J. Warmack, “Photon scanning tunneling microscope study of optical wave-guides,” Appl. Phys. Lett.56(16), 1515–1517 (1990). [CrossRef]
  4. D. P. Tsai, J. Kovacs, Z. Wang, M. Moskovits, V. M. Shalaev, J. S. Suh, and R. Botet, “Photon scanning tunneling microscopy images of optical excitations of fractal metal colloid clusters,” Phys. Rev. Lett.72(26), 4149–4152 (1994). [CrossRef] [PubMed]
  5. D. P. Tsai, J. Kovacs, and M. Moskovits, “Applications of apertured photon scanning-tunneling-microscopy (APSTM),” Ultramicroscopy57(2-3), 130–140 (1995). [CrossRef]
  6. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science251(5000), 1468–1470 (1991). [CrossRef] [PubMed]
  7. S. Kawata and Y. Inouye, “Scanning probe optical microscopy using a metallic probe tip,” Ultramicroscopy57(2-3), 313–317 (1995). [CrossRef]
  8. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000). [CrossRef]
  9. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett.85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett.76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech.47(11), 2075–2084 (1999). [CrossRef]
  12. D. R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, “Limitations on subdiffraction imaging with a negative refractive index slab,” Appl. Phys. Lett.82(10), 1506–1508 (2003). [CrossRef]
  13. W. Cai, D. A. Genov, and V. M. Shalaev, “Superlens based metal-dielectric composites,” Phys. Rev. B72(19), 193101 (2005). [CrossRef]
  14. A. Schilling, J. Schilling, C. Reinhardt, and B. Chichkov, “A superlens for the deep ultraviolet,” Appl. Phys. Lett.95(12), 121909 (2009). [CrossRef]
  15. D. Schurig and D. R. Smith, “Sub-diffraction imaging with compensating bilayers,” New J. Phys.7, 162 (2005). [CrossRef]
  16. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B74(11), 115116 (2006). [CrossRef]
  17. A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Phys. Rev. B74(7), 075103 (2006). [CrossRef]
  18. A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nanorod array,” Phys. Rev. Lett.95(26), 267407 (2005). [CrossRef] [PubMed]
  19. J. Yao, K. T. Tsai, Y. Wang, Z. Liu, G. Bartal, Y. L. Wang, and X. Zhang, “Imaging visible light using anisotropic metamaterial slab lens,” Opt. Express17(25), 22380–22385 (2009). [CrossRef] [PubMed]
  20. Z. K. Zhou, M. Li, Z. J. Yang, X. N. Peng, X. R. Su, Z. S. Zhang, J. B. Li, N. C. Kim, X. F. Yu, L. Zhou, Z. H. Hao, and Q. Q. Wang, “Plasmon-Mediated Radiative Energy Transfer across a Silver Nanowire Array via Resonant Transmission and Subwavelength Imaging,” ACS Nano4(9), 5003–5010 (2010). [CrossRef] [PubMed]
  21. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science315(5819), 1699–1701 (2007). [CrossRef] [PubMed]
  22. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science315(5819), 1686 (2007). [CrossRef] [PubMed]
  23. B. H. Cheng, Y. Z. Ho, Y. C. Lan, and D. P. Tsai, “Optical hybrid-superlens-hyperlens for superresolution imaging,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  24. Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted Hybrid-superlens Hyperlens for Nano Imaging,” Opt. Express20(20), 22953–22960 (2012). [CrossRef] [PubMed]
  25. H. Wu, T. W. Odom, and G. M. Whitesides, “Reduction Photolithography Using Microlens Arrays: Applications in Gray Scale Photolithography,” Anal. Chem.74(14), 3267–3273 (2002). [CrossRef] [PubMed]
  26. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater.11(5), 432–435 (2012). [CrossRef] [PubMed]
  27. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, Oxford, 2006).
  28. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]
  29. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett.77(21), 3322–3324 (2000). [CrossRef]
  30. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express12(15), 3377–3382 (2004). [CrossRef] [PubMed]
  31. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express12(25), 6106–6121 (2004). [CrossRef] [PubMed]
  32. N. Yao, Z. Lai, L. Fang, C. Wang, Q. Feng, Z. Zhao, and X. Luo, “Improving resolution of superlens lithography by phase-shifting mask,” Opt. Express19(17), 15982–15989 (2011). [CrossRef] [PubMed]
  33. M. Mansuripur, A. R. Zakharian, A. Lesuffleur, S. H. Oh, R. J. Jones, N. C. Lindquist, H. Im, A. Kobyakov, and J. V. Moloney, “Plasmonic nano-structures for optical data storage,” Opt. Express17(16), 14001–14014 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited