OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Speeding up liquid crystal SLMs using overdrive with phase change reduction

Gregor Thalhammer, Richard W. Bowman, Gordon D. Love, Miles J. Padgett, and Monika Ritsch-Marte  »View Author Affiliations

Optics Express, Vol. 21, Issue 2, pp. 1779-1797 (2013)

View Full Text Article

Enhanced HTML    Acrobat PDF (1770 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nematic liquid crystal spatial light modulators (SLMs) with fast switching times and high diffraction efficiency are important to various applications ranging from optical beam steering and adaptive optics to optical tweezers. Here we demonstrate the great benefits that can be derived in terms of speed enhancement without loss of diffraction efficiency from two mutually compatible approaches. The first technique involves the idea of overdrive, that is the calculation of intermediate patterns to speed up the transition to the target phase pattern. The second concerns optimization of the target pattern to reduce the required phase change applied to each pixel, which in addition leads to a substantial reduction of variations in the intensity of the diffracted light during the transition. When these methods are applied together, we observe transition times for the diffracted light fields of about 1 ms, which represents up to a tenfold improvement over current approaches. We experimentally demonstrate the improvements of the approach for applications such as holographic image projection, beam steering and switching, and real-time control loops.

© 2013 OSA

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.7010) Lasers and laser optics : Laser trapping
(230.6120) Optical devices : Spatial light modulators
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(110.1080) Imaging systems : Active or adaptive optics

ToC Category:
Optical Devices

Original Manuscript: October 25, 2012
Revised Manuscript: December 17, 2012
Manuscript Accepted: January 4, 2013
Published: January 16, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Gregor Thalhammer, Richard W. Bowman, Gordon D. Love, Miles J. Padgett, and Monika Ritsch-Marte, "Speeding up liquid crystal SLMs using overdrive with phase change reduction," Opt. Express 21, 1779-1797 (2013)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Savage, “Digital spatial light modulators,” Nat. Photonics3, 170–172 (2009). [CrossRef]
  2. G. Lazarev, A. Hermerschmidt, S. Krüger, and S. Osten, “LCOS spatial light modulators: Trends and applications,” in Optical Imaging and Metrology: Advanced Technologies, W. Osten and N. Reingand, eds. (Wiley-VCH, 2012), chap. 1, pp. 1–30. [CrossRef]
  3. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt.36, 1517–1520 (1997). [CrossRef] [PubMed]
  4. K. D. Wulff, D. G. Cole, R. L. Clark, R. DiLeonardo, J. Leach, J. Cooper, G. Gibson, and M. J. Padgett, “Aberration correction in holographic optical tweezers,” Opt. Express14, 4169–4174 (2006). [CrossRef] [PubMed]
  5. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express15, 5801–5808 (2007). [CrossRef] [PubMed]
  6. G. Love, J. Major, and A. Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett.19, 1170–1172 (1994). [CrossRef] [PubMed]
  7. X. Xun, D. J. Cho, and R. W. Cohn, “Spiking voltages for faster switching of nematic liquid-crystal light modulators,” Appl. Opt.45, 3136–3143 (2006). [CrossRef] [PubMed]
  8. H. Hu, L. Hu, Z. Peng, Q. Mu, X. Zhang, C. Liu, and L. Xuan, “Advanced single-frame overdriving for liquid-crystal spatial light modulators,” Opt. Lett.37, 3324–3326 (2012). [CrossRef]
  9. S.-T. Wu and C.-S. Wu, “High-speed liquid-crystal modulators using transient nematic effect,” J. Appl. Phys.65, 527–532 (1989). [CrossRef]
  10. P. Bos and K. Koehler, “The pi-cell: a fast liquid-crystal optical-switching device,” Mol. Cryst. Liq. Cryst.113, 329–339 (1984). [CrossRef]
  11. H. K. Bucher, R. T. Klingbiel, and J. P. VanMeter, “Frequency-addressed liquid crystal field effect,” Appl. Phys. Lett.25, 186–188 (1974). [CrossRef]
  12. D. Dayton, S. Browne, J. Gonglewski, and S. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,” Appl. Opt.40, 2345–2355 (2001). [CrossRef]
  13. A. K. Kirby and G. D. Love, “Fast, large and controllable phase modulation using dual frequency liquid crystals,” Opt. Express12, 1470–1475 (2004). [CrossRef] [PubMed]
  14. Y.-H. Wu, Y.-H. Lin, Y.-Q. Lu, H. Ren, Y.-H. Fan, J. Wu, and S.-T. Wu, “Submillisecond response variable optical attenuator based on sheared polymer network liquid crystal,” Opt. Express12, 6382–6389 (2004). [CrossRef] [PubMed]
  15. B. Wang, G. Zhang, A. Glushchenko, J. West, P. Bos, and P. McManamon, “Stressed liquid-crystal optical phased array for fast tip-tilt wavefront correction,” Appl. Opt.44, 7754–7759 (2005). [CrossRef] [PubMed]
  16. J. Otón, P. Ambs, M. S. Millán, and E. Pérez-Cabré, “Multipoint phase calibration for improved compensation of inherent wavefront distortion in parallel aligned liquid crystal on silicon displays,” Appl. Opt.46, 5667–5679 (2007). [CrossRef] [PubMed]
  17. D. Engström, M. Persson, and M. Goksör, “Spatial phase calibration used to improve holographic optical trapping,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2012), p. DSu2C.3.
  18. R. D. Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express15, 1913–1922 (2007). [CrossRef] [PubMed]
  19. M. Persson, D. Engström, A. Frank, J. Backsten, J. Bengtsson, and M. Goksör, “Minimizing intensity fluctuations in dynamic holographic optical tweezers by restricted phase change,” Opt. Express18, 11250–11263 (2010). [CrossRef] [PubMed]
  20. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24, 608–610 (1999). [CrossRef]
  21. Z. Peng, Y. Liu, L. Yao, Z. Cao, Q. Mu, L. Hu, and L. Xuan, “Improvement of the switching frequency of a liquid-crystal spatial light modulator with optimal cell gap,” Opt. Lett.36, 3608–3610 (2011). [CrossRef] [PubMed]
  22. S.-T. Wu, “Phase retardation dependent optical response time of parallel-aligned liquid crystals,” J. Appl. Phys.60, 1836–1838 (1986). [CrossRef]
  23. Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, “Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope,” Opt. Express17, 2530–2537 (2009). [CrossRef] [PubMed]
  24. K. D. Wulff, D. G. Cole, and R. L. Clark, “Servo control of an optical trap,” Appl. Opt.46, 4923–4931 (2007). [CrossRef] [PubMed]
  25. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particleposition and force in optical tweezers using high-speed video microscopy,” Opt. Express16, 14561–14570 (2008). [CrossRef] [PubMed]
  26. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17, 22718–22725 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (449 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited