OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 8, Iss. 2 — Mar. 4, 2013

Scanning in situ Spectroscopy platform for imaging surgical breast tissue specimens

Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, and Brian W. Pogue  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 2185-2194 (2013)
http://dx.doi.org/10.1364/OE.21.002185


View Full Text Article

Enhanced HTML    Acrobat PDF (2745 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1x1cm2 square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the standard knife-edge technique and were found to be within ~8% of the theoretical predictions. Highly localized sampling offered inherent insensitivity to variations in background absorption allowing direct imaging of local scattering parameters, which was validated using a matrix of varying concentrations of Intralipid and blood in phantoms. Four representative, pathologically distinct lumpectomy tissue specimens were imaged, capturing natural variations in tissue scattering response within a given pathology. Variations as high as 60% were observed in the average reflectance and relative scattering power images, which must be taken into account for robust classification performance. Despite this variation, the preliminary data indicates discernible scatter power contrast between the benign vs malignant groups, but reliable discrimination of pathologies within these groups would require investigation into additional contrast mechanisms.

© 2013 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.5820) Scattering : Scattering measurements

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: November 6, 2012
Revised Manuscript: January 11, 2013
Manuscript Accepted: January 13, 2013
Published: January 22, 2013

Virtual Issues
Vol. 8, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Venkataramanan Krishnaswamy, Ashley M. Laughney, Wendy A. Wells, Keith D. Paulsen, and Brian W. Pogue, "Scanning in situ Spectroscopy platform for imaging surgical breast tissue specimens," Opt. Express 21, 2185-2194 (2013)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=oe-21-2-2185


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Krishnaswamy, P. J. Hoopes, K. S. Samkoe, J. A. O’Hara, T. Hasan, and B. W. Pogue, “Quantitative imaging of scattering changes associated with epithelial proliferation, necrosis, and fibrosis in tumors using microsampling reflectance spectroscopy,” J. Biomed. Opt.14(1), 014004 (2009). [CrossRef] [PubMed]
  2. B. W. Pogue and G. C. Burke, “Fiber-optic bundle design for quantitative fluorescence measurement from tissue,” Appl. Opt.37(31), 7429–7436 (1998). [CrossRef] [PubMed]
  3. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, “Fiber optic probe for polarized reflectance spectroscopy in vivo: Design and performance,” J. Biomed. Opt.7(3), 388–397 (2002). [CrossRef] [PubMed]
  4. N. Subhash, J. R. Mallia, S. S. Thomas, A. Mathews, P. Sebastian, and J. Madhavan, “Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands,” J. Biomed. Opt.11(1), 014018 (2006). [CrossRef] [PubMed]
  5. J.-G. Wu, Y.-Z. Xu, C.-W. Sun, R. D. Soloway, D.-F. Xu, Q.-G. Wu, K.-H. Sun, S.-F. Weng, and G.-X. Xu, “Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques,” Biopolymers62(4), 185–192 (2001). [CrossRef] [PubMed]
  6. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med.17(4), 350–357 (1995). [CrossRef] [PubMed]
  7. M. R. Austwick, B. Clark, C. A. Mosse, K. Johnson, D. W. Chicken, S. K. Somasundaram, K. W. Calabro, Y. Zhu, M. Falzon, G. Kocjan, T. Fearn, S. G. Bown, I. J. Bigio, and M. R. S. Keshtgar, “Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes,” J. Biomed. Opt.15(4), 047001 (2010). [CrossRef] [PubMed]
  8. J. Q. Brown, T. M. Bydlon, L. M. Richards, S. A. Bing Yu, J. Kennedy, L. G. Geradts, M. K. Wilke, J. Junker, W. T. Gallagher, Barry, and N. Ramanujam, “Optical Assessment of Tumor Resection Margins in the Breast,” IEEE J. Sel. Top. Quantum Electron.16(3), 530–544 (2010). [CrossRef] [PubMed]
  9. S. Kennedy, J. Geradts, T. Bydlon, J. Q. Brown, J. Gallagher, M. Junker, W. Barry, N. Ramanujam, and L. Wilke, “Optical breast cancer margin assessment: an observational study of the effects of tissue heterogeneity on optical contrast,” Breast Cancer Res.12(6), R91 (2010). [CrossRef] [PubMed]
  10. L. G. Wilke, J. Q. Brown, T. M. Bydlon, S. A. Kennedy, L. M. Richards, M. K. Junker, J. Gallagher, W. T. Barry, J. Geradts, and N. Ramanujam, “Rapid noninvasive optical imaging of tissue composition in breast tumor margins,” Am. J. Surg.198(4), 566–574 (2009). [CrossRef] [PubMed]
  11. N. Lue, J. W. Kang, C.-C. Yu, I. Barman, N. C. Dingari, M. S. Feld, R. R. Dasari, and M. Fitzmaurice, “Portable optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis: a new tool for intraoperative margin assessment,” PLoS ONE7(1), e30887 (2012). [CrossRef] [PubMed]
  12. A. L. Clark, A. M. Gillenwater, T. G. Collier, R. Alizadeh-Naderi, A. K. El-Naggar, and R. R. Richards-Kortum, “Confocal microscopy for real-time detection of oral cavity neoplasia,” Clin. Cancer Res.9(13), 4714–4721 (2003). [PubMed]
  13. Y. Wang, M. Raj, H. S. McGuff, G. Bhave, B. Yang, T. Shen, and X. Zhang, “Portable oral cancer detection using a miniature confocal imaging probe with a large field of view,” J. Micromech. Microeng.22(6), 065001 (2012). [CrossRef]
  14. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, P. B. Cipolloni, K.-H. Lim, S. D. Freedman, I. Bigio, B. P. Sachs, E. B. Hanlon, and L. T. Perelman, “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. U.S.A.104(44), 17255–17260 (2007). [CrossRef] [PubMed]
  15. D. S. Gareau, Y. Li, B. Huang, Z. Eastman, K. S. Nehal, and M. Rajadhyaksha, “Confocal mosaicing microscopy in Mohs skin excisions: feasibility of rapid surgical pathology,” J. Biomed. Opt.13(5), 054001 (2008). [CrossRef] [PubMed]
  16. J. Bini, J. Spain, K. Nehal, V. Hazelwood, C. DiMarzio, and M. Rajadhyaksha, “Confocal mosaicing microscopy of human skin ex vivo: spectral analysis for digital staining to simulate histology-like appearance,” J. Biomed. Opt.16(7), 076008 (2011). [CrossRef] [PubMed]
  17. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  18. V. Krishnaswamy, A. M. Laughney, K. D. Paulsen, and B. W. Pogue, “Dark-field scanning in situ spectroscopy platform for broadband imaging of resected tissue,” Opt. Lett.36(10), 1911–1913 (2011). [CrossRef] [PubMed]
  19. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. Franke, “Technique for fast measurement of gaussian laser beam parameters,” Appl. Opt.10(12), 2775–2776 (1971). [CrossRef] [PubMed]
  20. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A.100(21), 12349–12354 (2003). [CrossRef] [PubMed]
  21. Labsphere Inc, “Spectralon optical grade reflectance material,” http://labsphere.com.dev4.silvertech.net/products/reflectance-materials-and-coatings/high-reflectance-materials/optical.aspx (2012).
  22. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, 2007).
  23. R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. E. Sichirollo, “Extinction and absorption coefficients and scattering phase functions of human tissues in vitro,” Appl. Opt.28(12), 2318–2324 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited