OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 9, Iss. 3 — Mar. 6, 2014

Fast volumetric phase-gradient imaging in thick samples

J. David Giese, Tim N. Ford, and Jerome Mertz  »View Author Affiliations

Optics Express, Vol. 22, Issue 1, pp. 1152-1162 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3465 KB) Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Oblique back-illumination microscopy (OBM) provides high resolution, sub-surface phase-gradient images from arbitrarily thick samples. We present an image formation theory for OBM and demonstrate that OBM lends itself to volumetric imaging because of its capacity for optical sectioning. In particular, OBM can provide extended depth of field (EDOF) images from single exposures, by rapidly scanning the focal plane with an electrically tunable lens. These EDOF images can be further enhanced by deconvolution. We corroborate our theory with experimental volumetric images obtained from transparent bead samples and mouse cortical brain slices.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(350.5030) Other areas of optics : Phase

ToC Category:

Original Manuscript: November 15, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: December 22, 2013
Published: January 10, 2014

Virtual Issues
Vol. 9, Iss. 3 Virtual Journal for Biomedical Optics

J. David Giese, Tim N. Ford, and Jerome Mertz, "Fast volumetric phase-gradient imaging in thick samples," Opt. Express 22, 1152-1162 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Mertz, Introduction to Optical Microscopy (Roberts & Company, 2010).
  2. T. N. Ford, K. K. Chu, J. Mertz, “Phase-gradient microscopy in thick tissue with oblique back-illumination,” Nat. Methods 9, 1195–1197 (2012). [CrossRef] [PubMed]
  3. W. C. Stewart, “On differential phase contrast with an extended illumination source,” J. Opt. Soc. Am. 66, 813–818 (1976). [CrossRef]
  4. B. Kachar, “Asymmetric illumination contrast: a method of image formation for video light microscopy,” Science 227, 766–768 (1985). [CrossRef] [PubMed]
  5. R. Yi, K. K. Chu, J. Mertz, “Graded-field microscopy with white light,” Opt. Express 14, 5191–5200 (2006). [CrossRef] [PubMed]
  6. S. B. Mehta, C. J. R. Sheppard, “Quantitative phase-gradient imaging at high resolution with asymmetric illumination-based differential phase contrast,” Opt. Lett. 34, 1924–1926 (2009). [CrossRef] [PubMed]
  7. T. N. Ford, J. Mertz, “Video-rate imaging of microcirculation with single-exposure oblique back-illumination microscopy,” J. Biomed. Opt. 18, 0066007 (2013). [CrossRef]
  8. W. Carter, E. Wolf, “Coherence properties of lambertian and non-lambertian sources,” J. Opt. Soc. Am. 65, 1067–1071 (1975). [CrossRef]
  9. C. W. McCutchen, “Generalized aperture and the three-dimensional diffraction image,” J. Opt. Soc. Am. 54, 240–242 (1964). [CrossRef]
  10. C. Ventalon, R. Heintzmann, J. Mertz, “Dynamic speckle illumination microscopy with wavelet prefiltering,” Opt. Lett. 32, 1417–1419 (2007). [CrossRef] [PubMed]
  11. F. O. Fahrbach, F. F. Voigt, B. Schmid, F. Helmchen, J. Huisken, “Rapid 3D light-sheet microscopy with a tunable lens,” Opt. Express 21, 21010–21026 (2013). [CrossRef] [PubMed]
  12. K. Wicker, R. Heintzmann, “Fluorescence microscopy with extended depth of field” in Nanoscopy and Multidimensional Optical Fluorescence Microscopy, Alberto Diaspro, ed. (Chapman and Hall, 2010), pp. 4-1–4-16.
  13. G. Häusler, “A method to increase the depth of focus by two step image processing,” Opt. Commun. 6, 38–42 (1972). [CrossRef]
  14. H. Nagahara, S. Kuthirummal, C. Zhou, S. Nayar, “Flexible depth of field photography,” in Computer Vision ECCV 2008, D. Forsyth, P. Torr, A. Zisserman, eds. (SpringerBerlin Heidelberg, 2008), pp. 60–73. [CrossRef]
  15. E. J. Botcherby, M. J. Booth, R. Juskaitis, T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express 16, 21843–21848 (2008). [CrossRef] [PubMed]
  16. S. Liu, H. Hua, “Extended depth-of-field microscopic imaging with a variable focus microscope objective,” Opt. Express 19, 353–362 (2011). [CrossRef] [PubMed]
  17. P. A. Stokseth, “Properties of a defocused optical system,” J. Opt. Soc. Am. 59, 1314–1321 (1969). [CrossRef]
  18. C. J. R. Sheppard, M. Gu, “Approximation to the three-dimensional optical transfer function,” J. Opt. Soc. Am. A 8, 692–694 (1991). [CrossRef]
  19. M. R. Arnison, C. J. Cogswell, N. I. Smith, P. W. Fekete, K. Larkin, “Using the Hilbert transform for 3D visualization of differential interference contrast microscope images,” J. Micro. 199, 79–84 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (3034 KB)     
» Media 2: AVI (907 KB)     
» Media 3: AVI (1696 KB)     
» Media 4: AVI (1708 KB)     
» Media 5: AVI (4255 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited