OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Optothermorheological flow manipulation

Mekala Krishnan, Joonsik Park, and David Erickson  »View Author Affiliations


Optics Letters, Vol. 34, Issue 13, pp. 1976-1978 (2009)
http://dx.doi.org/10.1364/OL.34.001976


View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical methods for microfluidic flow manipulation offer a flexible, noncontact technique for both fluid actuation and valving. At present, however, such techniques are limited by their high laser power requirements, low achieved flow rates, or poor valve switching times. Here we demonstrate a microfluidic valving technique based on optothermorheological manipulation using a low-power 40 mW laser with switching times on the order of 1 s at high flow rates of 1 mm s . In our approach a laser beam incident on an absorbing substrate is used to locally heat a thermorheological fluid flowing in a microfluidic channel. The resulting gelation in the heated region creates a reversible fluid valve.

© 2009 Optical Society of America

OCIS Codes
(160.6060) Materials : Solgel
(160.6840) Materials : Thermo-optical materials

ToC Category:
Materials

History
Original Manuscript: April 6, 2009
Revised Manuscript: May 20, 2009
Manuscript Accepted: June 3, 2009
Published: June 24, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Mekala Krishnan, Joonsik Park, and David Erickson, "Optothermorheological flow manipulation," Opt. Lett. 34, 1976-1978 (2009)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-34-13-1976


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Q. Li, Electrokinetics in Microfluidics (Elsevier Academic, 2004).
  2. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, Science 288, 113 (2000). [CrossRef]
  3. T. Thorsen, S. J. Maerkl, and S. R. Quake, Science 298, 580 (2002). [CrossRef] [PubMed]
  4. H. Hartshorne, C. J. Backhouse, and W. E. Lee, Sens. Actuators B 99, 592 (2004). [CrossRef]
  5. C. Yamahata, M. Chastellain, V. K. Parashar, A. Petri, H. Hofmann, and M. A. M. Gijs, J. Microelectromech. Syst. 14, 96 (2005). [CrossRef]
  6. D. J. Beebe, J. S. Moore, J. M. Bauer, Q. Yu, R. H. Liu, C. Devadoss, and B. H. Jo, Nature 404, 588 (2000). [CrossRef] [PubMed]
  7. X. Z. Niu, W. J. Wen, and Y. K. Lee, Appl. Phys. Lett. 87, 243501 (2005). [CrossRef]
  8. B. Stoeber, Z. H. Yang, D. Liepmann, and S. J. Muller, J. Microelectromech. Syst. 14, 207 (2005). [CrossRef]
  9. J. Rose, A. Elgamal, and A. Sangiovannivincentelli, in Proceedings of the IEEE (IEEE, 1993), pp. 1013-1029. [CrossRef]
  10. M. Joanicot and A. Ajdari, Science 309, 887 (2005). [CrossRef] [PubMed]
  11. M. G. Pollack, A. D. Shenderov, and R. B. Fair, Lab Chip 2, 96 (2002). [CrossRef]
  12. C. Monat, P. Domachuk, and B. J. Eggleton, Nat. Photonics 1, 106 (2007). [CrossRef]
  13. D. Psaltis, S. R. Quake, and C. H. Yang, Nature 442, 381 (2006). [CrossRef] [PubMed]
  14. A. Casner and J. P. Delville, Phys. Rev. Lett. 90, 144503 (2003). [CrossRef] [PubMed]
  15. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, Nat. Mater. 5, 27 (2006). [CrossRef]
  16. C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, Lab Chip 7, 1029 (2007). [CrossRef] [PubMed]
  17. A. T. Ohta, A. Jamshidi, J. K. Valley, H. Y. Hsu, and M. C. Wu, Appl. Phys. Lett. 91, 074103 (2007). [CrossRef]
  18. F. M. Weinert and D. Braun, J. Appl. Phys. 104, 10 (2008). [CrossRef]
  19. J. P. Delville, M. R. de Saint Vincent, R. D. Schroll, H. Chraibi, B. Issenmann, R. Wunenburger, D. Lasseux, W. W. Zhang, and E. Brasselet, J. Opt. A 11, 15 (2009).
  20. S. R. Sershen, G. A. Mensing, M. Ng, N. J. Halas, D. J. Beebe, and J. L. West, Adv. Mater. (Weinheim, Ger.) 17, 1366 (2005). [CrossRef]
  21. Y. Shirasaki, J. Tanaka, H. Makazu, K. Tashiro, S. Shoji, S. Tsukita, and T. Funatsu, Anal. Chem. 78, 695 (2006). [CrossRef] [PubMed]
  22. S. Sugiura, K. Sumaru, K. Ohi, K. Hiroki, T. Takagi, and T. Kanamori, Sens. Actuators A 140, 176 (2007). [CrossRef]
  23. S. Sugiura, A. Szilagyi, K. Sumaru, K. Hattori, T. Takagi, G. Filipcsei, M. Zrinyi, and T. Kanamori, Lab Chip 9, 196 (2009). [CrossRef]
  24. D. A. Boyd, J. R. Adleman, D. G. Goodwin, and D. Psaltis, Anal. Chem. 80, 2452 (2008). [CrossRef] [PubMed]
  25. G. Wanka, H. Hoffmann, and W. Ulbricht, Macromolecules 27, 4145 (1994). [CrossRef]
  26. R. K. Prudhomme, G. W. Wu, and D. K. Schneider, Langmuir 12, 4651 (1996). [CrossRef]
  27. D. Erickson, D. Sinton, and D. Q. Li, Lab Chip 3, 141 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

Supplementary Material


» Media 1: MOV (3598 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited