OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Strain mapping with optically coupled plasmonic particles embedded in a flexible substrate

Takumi Sannomiya, Christian Hafner, and Janos Vörös  »View Author Affiliations

Optics Letters, Vol. 34, Issue 13, pp. 2009-2011 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (412 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A change of the optical coupling of plasmonic particles was observed upon deformation of a matrix elastomer where 50 nm gold particles were embedded. The coupling mode showed higher extinction at the polarization perpendicular to the strain direction than the parallel polarization, as deformation induces interparticle distance change. Simulation by a multiple multipole program confirmed such a spectral change when the orientation of a coupled particle cluster is deformed. The strain vector map was constructed from the microscopy images with different polarizations at the strain-sensitive wavelength.

© 2009 Optical Society of America

OCIS Codes
(160.4236) Materials : Nanomaterials
(280.4788) Remote sensing and sensors : Optical sensing and sensors
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 24, 2009
Revised Manuscript: April 30, 2009
Manuscript Accepted: May 29, 2009
Published: June 26, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Takumi Sannomiya, Christian Hafner, and Janos Vörös, "Strain mapping with optically coupled plasmonic particles embedded in a flexible substrate," Opt. Lett. 34, 2009-2011 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hutter and J. H. Fendler, Adv. Mater. (Weinheim, Ger.) 16, 1685 (2004). [CrossRef]
  2. J. R. Lakowicz, Plasmonics 1, 5 (2006). [CrossRef] [PubMed]
  3. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García de Abajo, Opt. Express 14, 9988 (2006). [CrossRef] [PubMed]
  4. M. A. Correa-Duarte, V. Salgueiriño-Maceira, A. Rinaldi, K. Sieradzki, M. Giersig, and L. M. Liz-Marzán, Gold Bull. 40, 7 (2007). [CrossRef]
  5. M. Dembo and Y. Wang, Biophys. J. 76, 2307 (1999). [CrossRef] [PubMed]
  6. M. Klinkenberg, P. Blümler, and B. Blümich, J. Magn. Reson. Ser. A 119, 197 (1996). [CrossRef]
  7. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, Adv. Mater. (Weinheim, Ger.) 11, 223 (1999). [CrossRef]
  8. Ch. Hafner, Phys. Status Solidi B 244, 3435 (2007). [CrossRef]
  9. P. Johnson and R. Christy, Phys. Rev. B 6, 4370 (1972). [CrossRef]
  10. T. M. Blättler, A. Binkert, M. Zimmermann, M. Textor, J. Vörös, and E. Reimhult, Nanotechnology 19, 075301 (2008). [CrossRef] [PubMed]
  11. M. T. Yang, N. J. Sniadecki, and C. S. Chen, Adv. Mater. (Weinheim, Ger.) 19, 3119 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited