OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 4, Iss. 9 — Sep. 4, 2009

Polarization conversion in confocal microscopy with radially polarized illumination

Wai Teng Tang, Elijah Y. S. Yew, and Colin J. R. Sheppard  »View Author Affiliations

Optics Letters, Vol. 34, Issue 14, pp. 2147-2149 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (206 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The effects of using radially polarized illumination in a confocal microscope are discussed, and the introduction of a polarization mode converter into the detection optics of the microscope is proposed. We find that with such a configuration, bright-field imaging can be performed without losing the resolution advantage of radially polarized illumination. The detection efficiency can be increased by three times without having to increase the pinhole radius and sacrificing the confocality of the system. Furthermore, the merits of such a setup are also discussed in relation to surface plasmon microscopy and single-molecule orientation studies, where the doughnut point spread function can be engineered into a single-lobed point spread function.

© 2009 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(180.1790) Microscopy : Confocal microscopy
(260.5430) Physical optics : Polarization

ToC Category:
Imaging Systems

Original Manuscript: April 6, 2009
Manuscript Accepted: May 24, 2009
Published: July 9, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Wai Teng Tang, Elijah Y. S. Yew, and Colin J. R. Sheppard, "Polarization conversion in confocal microscopy with radially polarized illumination," Opt. Lett. 34, 2147-2149 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. P. Biss, K. S. Youngworth, and T. G. Brown, Appl. Opt. 45, 470 (2006). [CrossRef] [PubMed]
  2. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  3. C. J. R. Sheppard and A. Choudhury, Appl. Opt. 43, 4322 (2004). [CrossRef] [PubMed]
  4. H. Wang, L. Shi, B. Lukyanchuk, C. J. R. Sheppard, and C. T. Chong, Nat. Photonics 2, 501 (2008). [CrossRef]
  5. B. Sick, B. Hecht, and L. Novotny, Phys. Rev. Lett. 85, 4482 (2000). [CrossRef] [PubMed]
  6. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, Phys. Rev. Lett. 86, 5251 (2001). [CrossRef] [PubMed]
  7. J. T. Fourkas, Opt. Lett. 26, 211 (2001). [CrossRef]
  8. Z. Sikorski and L. M. Davis, Opt. Express 16, 3660 (2008). [CrossRef] [PubMed]
  9. M. R. Foreman, C. M. Romero, and P. Török, Opt. Lett. 33, 1020 (2008). [CrossRef] [PubMed]
  10. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, Biophys. J. 91, 2626 (2006). [CrossRef] [PubMed]
  11. P. D. Higdon, P. Török, and T. Wilson, J. Microsc. 193, 127 (1999). [CrossRef]
  12. P. Török, P. D. Higdon, and T. Wilson, J. Mod. Opt. 45, 1681 (1998). [CrossRef]
  13. C. J. R. Sheppard, J. Microsc. 168, 209 (1992). [CrossRef]
  14. M. Gu and C. J. R. Sheppard, J. Opt. Soc. Am. A 9, 151 (1992). [CrossRef]
  15. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996). [CrossRef] [PubMed]
  16. W. T. Tang, E. Chung, Y.-H. Kim, P. T. C. So, and C. J. R. Sheppard, Opt. Express 15, 4634 (2007). [CrossRef] [PubMed]
  17. E. Y. S. Yew and C. J. R. Sheppard, Opt. Commun. 275, 453 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited