OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 6, Iss. 1 — Jan. 3, 2011

On the higher-order Kerr effect in femtosecond filaments

M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney  »View Author Affiliations

Optics Letters, Vol. 35, Issue 21, pp. 3685-3687 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A recent experiment probing the electronic nonlinearity in the femtosecond filament indicated that the optical Kerr effect not only saturates but even changes its sign at high intensities and thus switches from self-focusing to a strongly defocusing regime. Here we examine, through simulations and experiment, some implications of such a behavior. We perform comparative simulations based on the standard model on one hand and on a model implementing the intensity-dependent Kerr effect on the other. Comparison with an experiment provides a strong indication that of these two Kerr-effect models the standard model is better in capturing the observed length of the filament. However, neither of the models can reproduce length and filament radius. Possible implications are discussed.

© 2010 Optical Society of America

OCIS Codes
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Ultrafast Optics

Original Manuscript: August 10, 2010
Revised Manuscript: October 2, 2010
Manuscript Accepted: October 6, 2010
Published: October 28, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

M. Kolesik, D. Mirell, J.-C. Diels, and J. V. Moloney, "On the higher-order Kerr effect in femtosecond filaments," Opt. Lett. 35, 3685-3687 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007). [CrossRef]
  2. L. Berge, S. Skupin, R. Nuter, J. Kasparian, and J. Wolf, Rep. Prog. Phys. 70, 1633 (2007). [CrossRef]
  3. S. L. Chin, F. Theberge, and W. Liu, Appl. Phys. B 86, 477(2007). [CrossRef]
  4. N. Aközbek, M. Scalora, C. M. Bowden, and S. L. Chin, Opt. Commun. 191, 353 (2001). [CrossRef]
  5. M. Nurhuda, A. Suda, and K. Midorikawa, New J. Phys. 10, 053006 (2008). [CrossRef]
  6. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 17, 13429 (2009). [CrossRef] [PubMed]
  7. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, Opt. Express 18, 3011 (2010). [CrossRef]
  8. P. Bejot, J. Kasparian, S. Henin, V. Loriot, T. Vieillard, E. Hertz, O. Faucher, B. Lavorel, and J.-P. Wolf, Phys. Rev. Lett. 104, 103903 (2010). [CrossRef] [PubMed]
  9. M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604(2004). [CrossRef]
  10. J. Schwarz, P. K. Rambo, and J.-C. Diels, Appl. Phys. B. 72, 343 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited