OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editors: Andrew Dunn and Anthony Durkin
  • Vol. 7, Iss. 6 — May. 25, 2012

Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor

Wei Zhang, David Webb, and Gangding Peng  »View Author Affiliations


Optics Letters, Vol. 37, Issue 8, pp. 1370-1372 (2012)
http://dx.doi.org/10.1364/OL.37.001370


View Full Text Article

Enhanced HTML    Acrobat PDF (260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an intrinsic biochemical concentration sensor based on a polymer optical fiber Bragg grating. The water content absorbed by the polymer fiber from a surrounding solution depends on the concentration of the solution because of the osmotic effect. The variation of water content in the fiber causes a change in the fiber dimensions and a variation in refractive index and, therefore, a shift in the Bragg wavelength. Saline solutions with concentration from 0% to 22% were used to demonstrate the sensing principle, resulting in a total wavelength shift of 0.9 nm, allowing high-resolution concentration measurements to be realized.

© 2012 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(250.5460) Optoelectronics : Polymer waveguides

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 19, 2012
Revised Manuscript: February 22, 2012
Manuscript Accepted: February 22, 2012
Published: April 12, 2012

Virtual Issues
Vol. 7, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Wei Zhang, David Webb, and Gangding Peng, "Polymer optical fiber Bragg grating acting as an intrinsic biochemical concentration sensor," Opt. Lett. 37, 1370-1372 (2012)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ol-37-8-1370


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Willsch, W. Ecke, and H. Bartelt, Proc. SPIE 7753, 775302 (2011). [CrossRef]
  2. M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, Sensors 7, 797 (2007). [CrossRef]
  3. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, IEEE Photon. Technol. Lett. 11, 352 (1999). [CrossRef]
  4. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, Opt. Lett. 30, 3296 (2005). [CrossRef]
  5. N. G. Harbach, “Fiber Bragg gratings in polymer optical fibers,” Ph.D. dissertation (Ecole Polytechnique Fédérale de Lausanne, 2008).
  6. J. A. Barrie and B. Platt, Polymer 4, 303 (1963). [CrossRef]
  7. C. Zhang, W. Zhang, D. J. Webb, and G.-D. Peng, Electron. Lett. 46, 643 (2010). [CrossRef]
  8. A. M. Thomas, J. Appl. Chem. 1, 141 (1951). [CrossRef]
  9. J. Crank, The Mathematics of Diffusion, 2nd ed. (Clarendon, 1975).
  10. J. H. van’t Hoff, “Osmotic pressure and chemical equilibrium,” Nobel Prize lecture, 13Dec1901, http://nobelprize.org/nobel_prizes/chemistry/laureates/1901/hoff-lecture.pdf .
  11. P. C. Hiemenz and T. P. Lodge, Polymer Chemistry: The Basic Concepts, 2nd ed. (CRC Press, 2007).
  12. W. Zhang, D. J. Webb, and G.-D. Peng, Proc. SPIE 7753, 77533M (2011). [CrossRef]
  13. J. Comyn, Polymer Permeability (Elsevier, 1985).
  14. F. M. Cox, M. C. J. Large, C. M. B. Cordeiro, R. Lwin, and A. Argyros, Proc. SPIE 7004, 700427 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited