OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 5 — May. 5, 2006

Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy

Matthew D. Chidley, Kristen D. Carlson, Rebecca R. Richards-Kortum, and Michael R. Descour  »View Author Affiliations


Applied Optics, Vol. 45, Issue 11, pp. 2545-2554 (2006)
http://dx.doi.org/10.1364/AO.45.002545


View Full Text Article

Enhanced HTML    Acrobat PDF (961 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The design, analysis, assembly methods, and optical-bench test results for a miniature injection-molded plastic objective lens used in a fiber-optic confocal reflectance microscope are presented. The five-lens plastic objective was tested as a stand-alone optical system before its integration into a confocal microscope for in vivo imaging of cells and tissue. Changing the spacing and rotation of the individual optical elements can compensate for fabrication inaccuracies and improve performance. The system performance of the miniature objective lens is measured by use of an industry-accepted slanted-edge modulation transfer function (MTF) metric. An estimated Strehl ratio of 0.61 and a MTF value of 0.66 at the fiber-optic bundle Nyquist frequency have been obtained. The optical bench testing system is configured to permit interactive optical alignment during testing to optimize performance. These results are part of an effort to demonstrate the manufacturability of low-cost, high-performance biomedical optics for high-resolution in vivo imaging. Disposable endoscopic microscope objectives could help in vivo confocal microscopy technology mature to permit wide-scale clinical screening and detection of early cancers and precancerous lesions.

© 2006 Optical Society of America

OCIS Codes
(110.4100) Imaging systems : Modulation transfer function
(170.1790) Medical optics and biotechnology : Confocal microscopy
(170.2150) Medical optics and biotechnology : Endoscopic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(220.3620) Optical design and fabrication : Lens system design

History
Original Manuscript: July 20, 2005
Revised Manuscript: November 14, 2005
Manuscript Accepted: November 15, 2005

Virtual Issues
Vol. 1, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Matthew D. Chidley, Kristen D. Carlson, Rebecca R. Richards-Kortum, and Michael R. Descour, "Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy," Appl. Opt. 45, 2545-2554 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-11-2545


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Wilson, "Confocal microscopy," in Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003), pp. 10-2-10-4.
  2. T. Collier, A. Lacy, A. Malpica, M. Follen, and R. Richards-Kortum, "Near real-time confocal microscopy of amelanotic tissue: detection of dysplasia in ex vivo cervical tissue," Acad. Radiol. 9, 504-512 (2002). [CrossRef] [PubMed]
  3. M. Rajadhyaksha, R. R. Anderson, and R. H. Webb, "Video-rate confocal scanning laser microscope for imaging human tissues in vivo," Appl. Opt. 38, 2105-2115 (1999). [CrossRef]
  4. W. Zheng, M. Harris, K. W. Kho, P. S. Thong, A. Hibbs, M. Olivo, and K. C. Soo, "Confocal endomicroscopic imaging of normal and neoplastic human tongue tissue using ALA-induced-PPIX fluorescence: a preliminary study," Oncol. Rep. 12, 397-401 (2004). [PubMed]
  5. A. F. Gmitro and D. Aziz, "Confocal microscopy through a fiber-optic imaging bundle," Opt. Lett. 44, 565-567 (1993). [CrossRef]
  6. K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, A. Malpica, and R. Richards-Kortum, "Near real time in-vivo fibre optic confocal microscopy: sub-cellular structure resolved," J. Microsc. 207, 137-145 (2002). [CrossRef] [PubMed]
  7. C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, "Fiber confocal reflectance microscope (FCRM) for in vivo imaging," Opt. Express 9, 821-830 (2001). [CrossRef] [PubMed]
  8. K. B. Sung, C. Liang, M. R. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49, 1168-1172 (2002). [CrossRef] [PubMed]
  9. K. Sung, R. Richards-Kortum, M. Follen, A. Malpica, C. Liang, and M. R. Descour, "Fiber optic confocal reflectance microscopy: a new real-time technique to view nuclear morphology in cervical squamous epithelium in vivo," Opt. Express 11, 3171-3181 (2003). [CrossRef] [PubMed]
  10. C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, "Design of high NA miniature objective for endoscopic fiber confocal reflectance microscope (FCRM)," Appl. Opt. 41, 4603-4610 (2002). [CrossRef] [PubMed]
  11. A. K. Dunn, C. Smithpeter, A. J. Welch, and R. Richards-Kortum, "Sources of contrast in confocal reflectance imaging," Appl. Opt. 35, 3441-3446 (1996). [CrossRef] [PubMed]
  12. ZEMAX Development Corporation, http://www.zemax.com/.
  13. M. D. Chidley, C. Liang, M. Descour, K. B. Sung, R. Richards-Kortum, and A. Gillenwater, "Miniature injection-molded optics for fiber-optic, in vivo confocal microscopy," in International Optical Design Conference, P.K.Manhart and J.M.Sasian, eds., Proc. SPIE 4832, 126-136 (2002).
  14. N. G. Sultanova, I. D. Nikolov, and C. D. Ivanov, "Measuring the refractometric characteristics of optical plastics," Opt. Quantum Electron. 35, 21-34 (2003). [CrossRef]
  15. C. Liang, "Design of miniature microscope objective optics for biomedical imaging," Ph.D. dissertation (University of Arizona, 2002).
  16. S. Baumer, Handbook of Plastic Optics (Wiley-VCH, 2005), p. 28. [CrossRef]
  17. R. E. Fisher and B. Tadic-Galeb, Optical System Design (McGraw-Hill, 2000), pp. 110 and 302-307.
  18. Source, ZEMAX Optical Design Program User's Guide (February 2005), p. 243.
  19. K. Carlson, M. D. Chidley, K. B. Sung, M. R. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, "In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens," Appl. Opt. 44, 1792-1797 (2005). [CrossRef] [PubMed]
  20. W. J. Smith, Modern Optical Engineering, 3rd ed. (McGraw-Hill, 2000), pp. 366-377.
  21. B. Wells, "Test and measurement: MTF provides an image-quality metric," Laser Focus World , 41(10), S7+/- (2005).
  22. A. P. Tzannes and J. M. Mooney, "Measurement of the modulation transfer function of infrared cameras," Opt. Eng. 34, 1808-1817 (1995). [CrossRef]
  23. P. D. Burns, "Slanted-edge MTF for digital camera and scanner analysis," in PICS 2000: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2000), pp. 135-138.
  24. P. D. Burns and D. Williams, "Refined slanted-edge measurements for practical camera and scanner testing," in PICS 2002: Image Processing, Image Quality, Image Capture, Systems Conference (The Society for Imaging Science and Technology, 2002), pp. 191-195.
  25. P. B. Greer and T. van Doorn, "Evaluation of an algorithm for the assessment of the MTF using an edge method," Med. Phys. 27, 2048-2059 (2000). [CrossRef] [PubMed]
  26. J. E. Greivenkamp, Field Guide to Geometrical Optics (SPIE Press, 2004), p. 89. [CrossRef]
  27. International Imaging Industry Association: http://www.i3a.org/downloadslowbariso.html.
  28. G. D. Boreman, Modulation Transfer Function in Optical and Electro-Optical Systems (SPIE Press, 2001), pp. 28 and 85-88. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited