OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Optical surface optimization for the correction of presbyopia

Guang-ming Dai  »View Author Affiliations


Applied Optics, Vol. 45, Issue 17, pp. 4184-4195 (2006)
http://dx.doi.org/10.1364/AO.45.004184


View Full Text Article

Enhanced HTML    Acrobat PDF (1435 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Presbyopia, the gradual loss of accommodation that accompanies aging, can be corrected by creating asphericity in the optical path of the eye. Bifocal and aspheric contact lenses, intraocular lenses, spectacle lenses, and laser refractive surgery are all widely used to alleviate the symptoms of presbyopia. These types of corrective surfaces try to concentrate vision in limited peaks over the full range of vergences. The methodology described in this paper is designed to correct presbyopia by optimizing vision over the entire target range of near to distant. A corrective surface was created by employing an iterative function minimization algorithm to optimize an optical metric. In most cases, it is possible to obtain an optical surface that will optically compensate for presbyopia.

© 2006 Optical Society of America

OCIS Codes
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(220.1250) Optical design and fabrication : Aspherics
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4060) Vision, color, and visual optics : Vision modeling
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

History
Original Manuscript: August 15, 2005
Revised Manuscript: November 7, 2005
Manuscript Accepted: November 8, 2005

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Guang-ming Dai, "Optical surface optimization for the correction of presbyopia," Appl. Opt. 45, 4184-4195 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-17-4184


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Ciuffreda, "Accommodation and its anomalies," in Vision and Visual Dysfunction, W.N.Charman, ed. (Macmillan, 1991), Vol. 1, pp. 231-279.
  2. H. von Helmholtz, Physiological Optics, J.P. C.Southall, ed. (Dover, 1896).
  3. A. Duane, "Studies in monocular and binocular accommodation with their clinical applications," Am. J. Ophthalmol. 5, 865-877 (1922).
  4. D. Hamasaki, J. Ong, and E. Marg, "The amplitude of accommodation in presbyopia," Am. J. Optom. Arch. Am. Acad. Optom. 33, 3-14 (1956). [PubMed]
  5. M. J. Turner, "Observations on the normal subjective amplitude of accommodation," Br. J. Physiol. Opt. 15, 70-100 (1958). [PubMed]
  6. R. A. Schachar, "Cause and treatment of presbyopia with a method for increasing the amplitude of accommodation," Ann. Ophthalmol. 24, 445-452 (1992). [PubMed]
  7. R. A. Schachar, T. Huang, and X. Huang, "Mathematic proof of Schachar's hypothesis of accommodation," Ann. Ophthalmol. 25, 5-9 (1993). [PubMed]
  8. S. P. Thornton, "Anterior ciliary sclerotomy, a procedure to reverse presbyopia," in Surgery for Hyperopia and Presbyopia, N.A.Sher, ed. (Williams & Wilkins, 1997), pp. 33-36.
  9. H. Fukasaku and J. A. Marron, "Anterior ciliary sclerectomy with silicone expansion plug implantation: effect on presbyopia and intraocular pressure," Int. Ophthalmol. Clin. 41, 133-141 (2001). [CrossRef] [PubMed]
  10. D. R. Hamilton, J. M. Davidorf, and R. K. Maloney, "Anterior ciliary sclerotomy for treatment of presbyopia: a prospective controlled study," Ophthalmology 109, 1970-1977 (2002). [CrossRef] [PubMed]
  11. J. Kessler, "Experiments in refilling the lens," Arch. Ophthalmol. 71, 412-416 (1964). [CrossRef] [PubMed]
  12. O. Nishi and K. Nishi, "Accommodation amplitude after lens refilling with injectable silicone by sealing the capsule with a plug in primates," Arch. Ophthalmol. 116, 1358-1361 (1998). [PubMed]
  13. Y. K. Han, J. W. Kwon, J. S. Kim, C.-S. Cho, W. R. Wee, and J. H. Lee, "In vitro and in vivo study of lens refilling with poloxamer hydrogel," Br. J. Ophthalmol. 87, 1399-1402 (2003). [CrossRef] [PubMed]
  14. S. A. Koopmans, T. Terwee, H. J. Haitjema, H. Deuring, S. van Aarle, and A. C. Kooijman, "Relation between injected volume and optical parameters in refilled isolated porcine lenses," Ophthalmic. Physiol. Opt. 24, 572-579 (2004). [CrossRef] [PubMed]
  15. J. S. Cumming, "Postoperative complications and uncorrected acuities after implantation of plate haptic silicone and three-piece silicone intraocular lenses," J. Cataract Refractive Surg. 19, 263-274 (1993).
  16. J. S. Cumming, S. G. Slade, and A. Chayet, "Clinical evaluation of the Model AT-45 silicone accommodating intraocular lens," Ophthalmology 108, 2005-2010 (2001). [CrossRef] [PubMed]
  17. A. Langenbucher, S. Huber, N. X. Nguyen, B. Seitz, G. C. Gusek-Schneider, and M. Küchle, "Measurement of accommodation after implantation of an accommodating posterior chamber intraocular lens," J. Cataract Refractive Surg. 29, 677-685 (2003). [CrossRef]
  18. M. Küchle, B. Sitz, A. Langenbucher, G. C. Gusek-Schneider, P. Martus, and N. X. Nguyen, "Comparison of 6-month results of implantation of the 1CU accommodative intraocular lens with conventional intraocular lenses," Ophthalmology 111, 318-324 (2004). [CrossRef] [PubMed]
  19. O. Stachs, H. Schneider, J. Stave, and R. Guthoff, "Potentially accommodating intraocular lenses--an in vitro and in vivo study using three-dimensional high-frequency ultrasound," J. Refract. Surg. 21, 37-45 (2005). [PubMed]
  20. R. A. Schachar, C. Tello, D. P. Cudmore, J. M. Liebmann, T. D. Black, and R. Ritch, "In vivo increase of the human lens equatorial diameter during accommodation," Am. J. Physiol. 271, 670-676 (1996).
  21. S. Mathews, "Scleral expansion surgery does not restore accommodation in human presbyopia," Ophthalmology 106, 873-877 (1999). [CrossRef] [PubMed]
  22. J. F. Malecaze, C. S. Gazagne, M. C. Tarroux, and J. M. Gorrand, "Scleral expansion bands for presbyopia," Ophthalmology 108, 2165-2171 (2001). [CrossRef] [PubMed]
  23. L. A. Ostrin, S. Kasthurirangan, and A. Glasser, "Evaluation of a satisfied bilateral scleral expansion band patient," J. Cataract Refractive Surg. 30, 1445-1453 (2004). [CrossRef]
  24. S. Jain, I. Arora, and D. T. Azar, "Success of monovision in presbyopes: review of the literature and potential applications to refractive surgery," Surv. Ophthalmol. 40, 491-499 (1996). [CrossRef] [PubMed]
  25. S. Jain, R. Ou, and D. T. Azar, "Monovision outcomes in presbyopic individuals after refractive surgery," Ophthalmology 108, 1430-1433 (2001). [CrossRef] [PubMed]
  26. K. C. Sippel, S. Jain, and D. T. Azar, "Monovision achieved with excimer laser refractive surgery," Int. Ophthalmol. Clin. 41, 91-101 (2001). [CrossRef] [PubMed]
  27. J. A. Guggenheim and C. H. To, "Monovision slows myopia progression," Br. J. Ophthalmol. 89, 1076-1077 (2005). [CrossRef] [PubMed]
  28. N. Chateau and D. Baude, "Simulated in situ optical performance of bifocal contact lenses," Optom. Vision Sci. 74, 532-539 (1997). [CrossRef]
  29. K. Fisher, E. Bauman, and J. Schwallie, "Evaluation of two new soft contact lenses for correction of presbyopia. The Focus Progressives multifocal and the Acuvue bifocal," Int. Contact Lens Clin. 26, 92-103 (2000). [CrossRef] [PubMed]
  30. J. Pujol, J. Gispets, and M. Arjona, "Optical performance in eyes wearing two multifocal contact lens designs," Ophthalmic Physiol. Opt. 23, 347-360 (2003). [CrossRef] [PubMed]
  31. J. T. Holladay, H. V. van Dijk, A. Lang, V. Protney, T. R. Willis, R. Sun, and H. C. Oksman, "Optical performance of multifocal intraocular lenses," J. Cataract Refractive Surg. 16, 413-422 (1990).
  32. S. P. B. Percival and S. S. Setty, "Prospectively randomized trial comparing the pseudoaccommodation of the AMO ARRAY multifocal lens and a monofocal lens," J. Cataract Refractive Surg. 19, 26-31 (1993).
  33. K. W. Brydon, A. C. Tokarewicz, and B. D. Nichols, "AMO array multifocal lens versus monofocal correction in cataract surgery," J. Cataract Refractive Surg. 26, 96-100 (2000). [CrossRef]
  34. S. Pieh, P. Marvan, B. Lackner, G. Hanselmayer, G. Schmidinger, R. Leitgeb, M. Sticker, C. K. Hitzenberger, A. F. Fercher, and C. Skorpik, "Quantitative performance of bifocal and multifocal intraocular lenses in a model eye: point spread function in multifocal intraocular lenses," Arch. Ophthalmol. 120, 23-28 (2002). [PubMed]
  35. D. R. Pope, "Progresive addition lenses: history, design, wearer satisfaction and trends," in Vision Science and Its Applications, V. Lakschmirarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 342-357.
  36. A. Agarwal, Presbyopia: A Surgical Textbook (Slack, 2002).
  37. H. Moreira, J. J. Garhus, A. Fasano, M. Lee, T. N. Clapham, and P. J. McDonell, "Multifocal corneal topographic changes with excimer laser photorefractive keratectomy," Arch. Ophthalmol. 110, 994-999 (1992). [CrossRef] [PubMed]
  38. P. Vinciguerra, G. M. Nizzola, G. Bailo, F. Niezzola, A. Ascari, and D. Epstein, "Excimer laser photorefractive keratectomy for presbyopia: 24-month follow-up in three eyes," J. Refract. Surg. 14, 31-37 (1998). [PubMed]
  39. A. Telandro, "Pseudo-accommodative cornea: a new concept for correction of presbyopia," J. Refract. Surg. 20, S714-S717 (2004). [PubMed]
  40. A. Mendez and N. A. Mendez, "Conductive keratoplasty for the correction of hyperopia," in Surgery for Hyperopia and Presbyopia, N.A.Sher, ed. (Williams & Wilkins, 1997), pp. 163-171.
  41. P. A. Asbell, R. K. Maloney, J. Davidorf, P. Hersh, M. McDonald, and E. Manche, "Conductive keratoplasty study group. Conductive keratoplasty for the correction of hyperopia," Trans. Am. Ophthalmol. Soc. 99, 79-84 (2001).
  42. M. B. McDonald, D. Durrie, P. Asbell, R. Maloney, and L. Nichamin, "Treatment of presbyopia with conductive keratoplasty: six-month results of the 1-Year United States FDA clinical trial," Cornea 23, 661-668 (2004). [CrossRef] [PubMed]
  43. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  44. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, "Standards for reporting the optical aberrations of eyes," in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2000), pp. 232-244.
  45. M. Born and E. Wolf, Principles of Optics (Pergamon, 1965).
  46. R. K. Tyson, "Conversion of Zernike aberration coefficients to Seidel and higher-order power series aberration coefficients," Opt. Lett. 7, 262-264 (1982). [CrossRef] [PubMed]
  47. G. Conforti, "Zernike aberration coefficients from Seidel and higher-order power series coefficients," Opt. Lett. 8, 407-408 (1983). [CrossRef] [PubMed]
  48. I. E. Lowenfeld, The Pupil: Anatomoy, Physiology, and Clinical Applications (Butterworth-Heinemann, 1999).
  49. A. Guirao and D. R. Williams, "A method to predict refractive errors from wave aberration data," Optom. Vision Sci. 80, 36-42 (2003). [CrossRef]
  50. R. A. Applegate, C. Ballentine, H. Gross, E. J. Sarver, and C. A. Sarver, "Visual acuity as a function of Zernike mode and level of root mean square error," Optom. Vision Sci. 80, 97-105 (2003). [CrossRef]
  51. X. Cheng and A. Bradley, "Predicting subjective judgment of best focus with objective image quality metrics," J. Vision 4, 310-321 (2004). [CrossRef]
  52. J. D. Marsack, L. N. Thibos, and R. A. Applegate, "Metrics of optical quality derived from wave aberrations predict visual performance," J. Vision 4, 322-328 (2004). [CrossRef]
  53. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  54. F. W. Campbell and D. G. Green, "Optical and retinal factors affecting visual resolution," J. Physiol. 181, 576-593 (1965). [PubMed]
  55. W. H. Press, S. A. Teukolsky, W. Vetterling, and B. P. Flannery, Numerical Recipes in C++ (Cambridge U. Press, 2002).
  56. J. A. Nelder and R. Mead, "A simplex method for function minimization," Comput. J. 7, 308-313 (1965).
  57. G.-m. Dai, "Using wavefront measurements to predict visual acuity," in Ophthalmic Technologies XIV, F. Manns, P. G. Söderberg, and A. Ho, eds., Proc. SPIE 5314, 220-228 (2004). [CrossRef]
  58. L. N. Thibos, M. Ye, X. Zhang, and A. Bradley, "The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans," Appl. Opt. 31, 3594-3600 (1992). [CrossRef] [PubMed]
  59. R. A. Applegate and V. Lakshminarayanan, "Parametric representation of Stiles-Crawford functions: normal variation of peak location and directionality," J. Opt. Soc. Am. A 10, 1611-1623 (1993). [CrossRef] [PubMed]
  60. W. J. Smith, Modern Optical Engineering: The Design of Optical Systems, 2nd ed. (McGraw-Hill, 1990), pp. 125-128.
  61. G. E. Legge, K. T. Mullen, G. C. Woo, and F. W. Campbell, "Tolerance to visual defocus," J. Opt. Soc. Am. A 4, 851-863 (1987). [CrossRef] [PubMed]
  62. D. A. Atchison, W. N. Charman, and R. L. Woods, "Subjective depth-of-focus of the eye," Optom. Vision Sci. 74, 511-520 (1997). [CrossRef]
  63. A. Duane, "Normal values of the accommodation at all ages," J. Am. Med. Assoc. 59, 1010-1013 (1912). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited