OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography

Bin Liu, Michelle Harman, Susanne Giattina, Debra L Stamper, Charles Demakis, Mark Chilek, Stephanie Raby, and Mark E. Brezinski  »View Author Affiliations

Applied Optics, Vol. 45, Issue 18, pp. 4464-4479 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (4187 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Assessing tissue birefringence with imaging modality polarization-sensitive optical coherence tomography (PS-OCT) could improve the characterization of in vivo tissue pathology. Among the birefringent components, collagen may provide invaluable clinical information because of its alteration in disorders ranging from myocardial infarction to arthritis. But the features required of clinical imaging modality in these areas usually include the ability to assess the parameter of interest rapidly and without extensive data analysis, the characteristics that single-detector PS-OCT demonstrates. But beyond detecting organized collagen, which has been previously demonstrated and confirmed with the appropriate histological techniques, additional information can potentially be gained with PS-OCT, including collagen type, form versus intrinsic birefringence, the collagen angle, and the presence of multiple birefringence materials. In part I, we apply the simple but powerful fast-Fourier transform (FFT) to both PS-OCT mathematical modeling and in vitro bovine meniscus for improved PS-OCT data analysis. The FFT analysis yields, in a rapid, straightforward, and easily interpreted manner, information on the presence of multiple birefringent materials, distinguishing the true anatomical structure from patterns in image resulting from alterations in the polarization state and identifying the tissue∕phantom optical axes. Therefore the use of the FFT analysis of PS-OCT data provides information on tissue composition beyond identifying the presence of organized collagen in real time and directly from the image without extensive mathematical manipulation or data analysis. In part II, Helistat phantoms (collagen type I) are analyzed with the ultimate goal of improved tissue characterization. This study, along with the data in part I, advance the insights gained from PS-OCT images beyond simply determining the presence or absence of birefringence.

© 2006 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: December 23, 2004
Revised Manuscript: September 29, 2005
Manuscript Accepted: January 23, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Bin Liu, Michelle Harman, Susanne Giattina, Debra L Stamper, Charles Demakis, Mark Chilek, Stephanie Raby, and Mark E. Brezinski, "Characterizing of tissue microstructure with single-detector polarization-sensitive optical coherence tomography," Appl. Opt. 45, 4464-4479 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, G. Fujimoto, and M. E. Brezinski, "High-resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography," J. Rheumatol. 26, 627-635 (1999). [PubMed]
  2. W. Drexler, D. Stamper, C. Jesser, X. D. Li, C. Pitris, K. Saunders, S. Martin, M. B. Lodge, J. G. Fujimoto, and M. E. Brezinski, "Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage:implications for osteoarthritis," J. Rheumatol. 28, 1311-1318 (2001). [PubMed]
  3. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, "Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging," J. Opt. Soc. Am. B 9, 903-908 (1992). [CrossRef]
  4. J. F. deBoer, T. E. Milner, M. J. C. vanGemert, and J. S. Nelson, "Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography," Opt. Lett. 22, 934-936 (1997). [CrossRef]
  5. K. D. Brandt, Textbook of Rheumatology, W. N. Kelly, E. D. Harris, Jr., S. Ruddy, and C. B. Sledge, eds. (Saunders, 1989), pp. 1480-1500.
  6. S. Giattina, B. Courtney, P. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Measurement of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)." Int. J. Cardiol. 107, 400-409 (2006) [CrossRef] [PubMed]
  7. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  8. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, "Optical coherence tomography for optical biopsy--properties and demonstration of vascular pathology," Circulation 93, 1206-1213 (1996). [PubMed]
  9. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, and S. A. Boppart, "Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner," Appl. Opt. 42, 4606-4611 (2003). [CrossRef] [PubMed]
  10. S. D. Martin, N. A. Patel, S. B. Adams, M. J. Roberts, S. Plummer, D. L. Stamper, M. E. Brezinski, and J. G. Fujimoto, "New technology for assessing microstructural components of tendons and ligaments," Int. Orthopaed. 27, 184-189 (2003).
  11. B. Liu, M. Harman, and M. E. Brezinski, "Variables affecting polarization-sensitive optical coherence tomography imaging examined through the modeling of birefringent phantoms," J. Opt. Soc. Am. A 22, 262-271 (2005). [CrossRef]
  12. M. Wolman and F. H. Kasten, "Polarized-light microscopy in the study of the molecular structure of collagen and reticulin," Histochemistry 85, 41-49 (1986). [CrossRef] [PubMed]
  13. S. Huard, "Polarized Optical Waves," in Polarization of Light (Wiley, 1997), pp. 1-33.
  14. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999), pp. 554-568.
  15. E. Hecht, Optics/Eugene Hecht (Addison-Wesley, 1998).
  16. L. C. U. Junqueira, G. S. Montes, and E. M. Sanchez, "The influence of tissue section thickness on the study of collagen by the picrosirius-polarization method," Histochemistry 74, 153-156 (1982). [CrossRef] [PubMed]
  17. M. Szendroi, G. Vajta, L. Kovacs, Z. Schaff, and K. Lapis, "Polarization colors of collagen fibers--a sign of collagen production activity in fibrotic processes," Acta Morphol. Hung. 32, 47-55 (1984). [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  19. H. A. Eriksen, A. Pajala, J. Leppilahti, and J. Risteli, "Increased content of type III collagen at the rupture site of human Achilles tendon," J. Orthopaed. Res. 20, 1352-1357 (2002). [CrossRef]
  20. W. Petersen and B. Tillmann, "Collagenous fibril texture of the human knee joint menisci," Anat. Embryol. 197, 317-324 (1998). [CrossRef] [PubMed]
  21. Y. E. Yarker, R. M. Aspden, and D. W. L. Hukins, "Birefringence of articular cartilage and the distribution of collagen fibril orientations," Connect. Tissue Res. 11, 207-213 (1983). [CrossRef] [PubMed]
  22. S. Huard, "Polarized optical waves," in Polarization of Light (Wiley, 1997), pp. 1-33.
  23. W. Folkhard, E. Knorzer, E. Mosler, and T. Nemetschek, "Packing of collagen molecules modified with 2-propanol," J. Mol. Biol. 177, 841-844 (1984). [CrossRef] [PubMed]
  24. R. D. B. Fraser, T. P. Macrae, A. Miller, and E. Suzuki, "Molecular conformation and packing in collagen fibrils," J. Mol. Biol. 167, 497-521 (1983). [CrossRef] [PubMed]
  25. E. R. Pimentel, "Form birefringence of collagen bundles," Acta Histochem. Cytochem. 14, 35-40 (1981). [CrossRef]
  26. D. P. Speer and L. Dahners, "Collagenous architecture of articular cartilage--correlation of scanning electron microscopy and polarized-light microscopy observations," Clin. Orthopaedi. Related Res. 139, 267-275 (1979).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited