OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 7 — Jul. 17, 2006

Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer

Dmitry A. Zimnyakov, Alexander P. Sviridov, Liana V. Kuznetsova, Stepan A. Baranov, and Natali Yu. Ignatieva  »View Author Affiliations

Applied Optics, Vol. 45, Issue 18, pp. 4480-4490 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Speckle-contrast monitoring of laser-mediated tissue modification is examined for the specific case of delivery of speckle-modulated light from the tissue to detector (CCD camera) with a fiber-optic element (bundle). The influence of the transfer properties of a bundle-based optical system on the decorrelation rate of detected dynamic speckles is analyzed. Compared with the widely used method on the base of speckle-contrast analysis in the image plane, the considered technique is characterized by a more pronounced correlation between variations of the contrast of time-averaged speckle patterns and changes in the temperature of the modified tissue. The possibility of characterization of the modification kinetics (in particular, by the evaluation of the characteristic activation energy) using the developed speckle technique is demonstrated.

© 2006 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(170.6930) Medical optics and biotechnology : Tissue

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 15, 2005
Revised Manuscript: January 28, 2006
Manuscript Accepted: February 10, 2006

Virtual Issues
Vol. 1, Iss. 7 Virtual Journal for Biomedical Optics

Dmitry A. Zimnyakov, Alexander P. Sviridov, Liana V. Kuznetsova, Stepan A. Baranov, and Natali Yu. Ignatieva, "Monitoring of tissue thermal modification with a bundle-based full-field speckle analyzer," Appl. Opt. 45, 4480-4490 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher and J. D. Briers, "Flow visualization by means of single-exposure speckle photography," Opt. Commun. 37, 326-329 (1981). [CrossRef]
  2. J. D. Briers and S. Webster, "Quasi-real time digital version of single-exposure speckle photography for full-field monitoring of velocity or flow fields," Opt. Commun. 116, 36-42 (1995). [CrossRef]
  3. J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a non-scanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996). [CrossRef]
  4. J. D. Briers and A. F. Fercher, "Retinal blood-flow visualization by means of laser speckle photography," Invest. Ophthalmol. Visual Sci. 22, 255-259 (1982).
  5. G. Richards and J. D. Briers, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA): improving the dynamic range," in Proc. SPIE 2981, 160-171 (1997). [CrossRef]
  6. A. F. Fercher, M. Peukert, and E. Roth, "Visualization and measurement of retinal blood flow by means of laser speckle photography," Opt. Eng. 25, 731-735 (1986).
  7. J. D. Briers, G. Richards, and X. W. He, "Capillary blood flow monitoring using laser speckle contrast analysis (LASCA)," J. Biomed. Opt. 4, 164-175 (1999). [CrossRef]
  8. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001). [CrossRef] [PubMed]
  9. D. A. Zimnyakov, D. N. Agafonov, A. P. Sviridov, A. I. Omel'chenko, L. V. Kuznetsova, and V. N. Bagratashvili, "Speckle-contrast monitoring of tissue thermal modification," Appl. Opt. 41, 5989-5996 (2002). [CrossRef] [PubMed]
  10. G. E. Nilsson, E. G. Salerud, N. O. T. Stromberg, and K. Wardell, "Laser Doppler perfusion monitoring and imaging," in Biomedical Photonics Handbook, T. Vo-Dinh, ed. (CRC Press, 2003), pp. 15-1-15-24.
  11. V. Viasnoff, F. Lequeux, and D. J. Pine, "Multispeckle diffusing-wave spectroscopy: a tool to study slow relaxation and time-dependent dynamics," Rev. Sci. Instrum. 73, 2336-2344 (2002). [CrossRef]
  12. S. E. Skipetrov and R. Maynard, "Dynamic multiple scattering of light in multilayer turbid media," Phys. Lett. A 217, 181-185 (1996). [CrossRef]
  13. S. Romer, F. Scheffold, and P. Schurtenberger, "Sol-gel transition of concentrated colloidal suspensions," Phys. Rev. Lett. 85, 4980-4983 (2000). [CrossRef] [PubMed]
  14. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, "Diffusing-wave spectroscopy of non-ergodic media," Phys. Rev. E 63, 061404 (2001). [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  16. D. A. Zimnyakov, J. T. Oh, Yu. P. Sinichkin, V. A. Trifonov, and E. V. Gurianov, "Polarization-sensitive speckle spectroscopy of scattering media beyond the diffusion limit," J. Opt. Soc. Am. A 21, 59-70 (2004). [CrossRef]
  17. T. Yoshimura, "Statistical properties of dynamic speckles," J. Opt. Soc. Am. A 3, 1032-1054 (1986). [CrossRef]
  18. T. Yoshimura, K. Nakagawa, and N. Wakabayashi, "Rotational and boiling motion of speckles in a two-lens imaging system," J. Opt. Soc. Am. A 3, 1018-1022 (1986). [CrossRef]
  19. H. Z. Cummins and E. R. Pike, eds., Photon Correlation and Light-Beating Spectroscopy, NATO Advanced Study Institute Series B: Physics (Plenum, Press, 1974).
  20. D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, "Speckle technologies for monitoring and imaging of tissues and tissue-like phantoms," in Handbook of Optical Medical Diagnostics, V. V. Tuchin, ed. (SPIE Press, 2002), pp. 987-1036.
  21. N. Takai, T. Iwai, and T. Asakura, "Correlation distance of dynamic speckles," Appl. Opt. 22, 170-177 (1983). [CrossRef] [PubMed]
  22. N. Yu. Ignatieva, V. V. Lunin, S. V. Averkiev, A. F. Maiorova, V. N. Bagratashvili, and E. N. Sobol, "DSC investigation of connective tissues treated by IR-laser radiation," Thermochim. Acta 422, 43-48 (2004). [CrossRef]
  23. A. M. Jamieson, J. Blackwell, H. Reihanian, H. Ohno, R. Gupta, D. A. Carrino, A. I. Caplan, L. H. Tang, and L. C. Rosenberg, "Thermal and solvent stability of proteoglycan aggregates by quasielastic laser light-scattering," Carbohydr. Res. 160, 329-341 (1987). [CrossRef] [PubMed]
  24. J. E. Scott, "Secondary and tertiary structures of hyaluronan in aqueous solution. Some biological consequences," Science of Hyaluronan Today, V. C. Hascall and M. Yanagishita, eds., http://www.glycoforum.gr.jp/science/hyaluronan/hyaluronanE.html (1998).
  25. G. C. Pimentel and A. L. McClennan, The Hydrogen Bond (Freeman, 1960), p. 189.
  26. G. Maret and P. E. Wolf, "Multiple light scattering from disordered media. The effect of Brownian motions of scatterers," Z. Phys. B 65, 409-413 (1987). [CrossRef]
  27. F. C. MacKintosh and S. John, "Diffusing-wave spectroscopy and multiple scattering of light in correlated random media," Phys. Rev. B 40, 2382-2406 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited