OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 12 — Dec. 18, 2006

Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging

Danny K. Joseph, Theodore J. Huppert, Maria Angela Franceschini, and David A. Boas  »View Author Affiliations

Applied Optics, Vol. 45, Issue 31, pp. 8142-8151 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (2449 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Although most current diffuse optical brain imaging systems use only nearest- neighbor measurement geometry, the spatial resolution and quantitative accuracy of the imaging can be improved through the collection of overlapping sets of measurements. A continuous-wave diffuse optical imaging system that combines frequency encoding with time-division multiplexing to facilitate overlapping measurements of brain activation is described. Phantom measurements to confirm the expected improvement in spatial resolution and quantitative accuracy are presented. Experimental results showing the application of this instrument for imaging human brain activation are also presented. The observed improvement in spatial resolution is confirmed by functional magnetic resonance imaging.

© 2006 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3890) Medical optics and biotechnology : Medical optics instrumentation

Original Manuscript: December 5, 2005
Revised Manuscript: May 19, 2006
Manuscript Accepted: May 19, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Danny K. Joseph, Theodore J. Huppert, Maria Angela Franceschini, and David A. Boas, "Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-8151 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Hoshi, "Functional near-infrared optical imaging: utility and limitations in human brain mapping," Psychophysiology 40, 511-520 (2003). [CrossRef] [PubMed]
  2. M. Ferrari, L. Mottola, and V. Quaresima, "Principles, Techniques, and limitations of near infrared spectroscopy," Can. J. Appl. Physiol. 29, 463-87 (2004). [CrossRef] [PubMed]
  3. A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, "Near infrared spectroscopy: new tool to study hemodynamic changes during activation of brain function in human adults," Neurosci. Lett. 154, 101-104 (1993). [CrossRef] [PubMed]
  4. G. Gratton, M. Fabiani, D. Friedman, M. A. Franceschini, S. Fantini, P. M. Corballis, and E. Gratton, "Rapid changes of optical parameters in the human brain during a tapping task," J. Cogn. Neurosci. 7, 446-456 (1995). [CrossRef]
  5. B. Chance, Z. Zhuang, U. A. Chu, C. Alter, and L. Lipton, "Cognition activated low frequency modulation of light absorption in human brain," Proc. Natl. Acad. Sci. U.S.A. 90, 2660-2774 (1993). [CrossRef]
  6. M. Cope and D. T. Delpy, "System for long-term measurement of cerebral blood flow and tissue oxygenation on newborn infants by infrared transillumination," Med. Biol. Eng. Comput. 26, 289-294 (1988). [CrossRef] [PubMed]
  7. S. Ogawa, D. W. Tank, R. Menon, J. M. Ellermann, S. G. Kim, H. Merkle, and K. Ugurbil, "Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging," Proc. Natl. Acad. Sci. U.S.A. 89, 5951-5955 (1992). [CrossRef] [PubMed]
  8. K. K. Kwong, J. W. Belliveau, D. A. Chesler, I. E. Goldberg, R. M. Weisskoff, B. P. Poncelet, D. N. Kennedy, B. E. Hoppel, M. S. Cohen, R. Turner, H. Cheng, T. J. Brady, and B. R. Rosen, "Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation," Proc. Natl. Acad. Sci. U.S.A. 89, 5675-5679 (1992). [CrossRef] [PubMed]
  9. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).
  10. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, "Spatial and temporal analysis of human motor activity using noninvasive NIR topography," Med. Phys. 22, 1997-2005 (1995). [CrossRef] [PubMed]
  11. M. A. Franceschini, V. Toronov, M. Filiaci, E. Gratton, and S. Fantini, "On-line optical imaging of the human brain with 160 ms temporal resolution," Opt. Express 6, 49-57 (2000). [CrossRef] [PubMed]
  12. D. A. Boas, T. J. Gaudette, G. Strangman, X. Cheng, J. J. A. Marota, and J. B. Mandeville, "The accuracy of near infrared spectroscopy and imaging during focal changes in cerebral hemodynamics," Neuroimage 13, 76-90 (2001). [CrossRef] [PubMed]
  13. G. Gratton, P. M. Corballis, E. Cho, M. Fabiani, and D. C. Hood, "Shades of gray matter: noninvasive optical images of human brain responses during visual stimulation," Psychophysiology 32, 505-9 (1995). [CrossRef] [PubMed]
  14. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004). [CrossRef] [PubMed]
  15. C. H. Schmitz, M. Locker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002). [CrossRef]
  16. A. M. Dale, "Optimal experimental design for event-related fMRI," Human Brain Mapp. 8, 109-114 (1999). [CrossRef]
  17. Photon Migration Imaging Lab, Martinos Center for Biomedical Imaging, http://www.nmr.mgh.harvard.edu/PMI/.
  18. J. T., Serences, "A comparison of methods for characterizing the event-related BOLD time series in rapid fMRI," Neuroimage 21, 1690-1700 (2004). [CrossRef] [PubMed]
  19. H. Dehghani, D. C. Barber, and I. Basarab-Horwath, "Incorporating a priori anatomical information into image reconstruction in electrical impedance tomography," Physiol. Meas 20, 87-102 (1999). [CrossRef] [PubMed]
  20. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  21. R. W. Cox and A. Jesmanowicz, "Real-time 3D image registration for functional MRI," Magn. Reson. Med. 42, 1014-1018 (1999). [CrossRef] [PubMed]
  22. E. W. Weisstein, "Lambert azimuthal equal-area projection," MathWorld, http://mathworld.wolfram.com/LambertAzimuthal-Equal-AreaProjection.html.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited