OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 12 — Dec. 18, 2006

Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements

Jiantang Sun, Kun Fu, Adrien Wang, Alex W. H. Lin, Urs Utzinger, and Rebekah Drezek  »View Author Affiliations


Applied Optics, Vol. 45, Issue 31, pp. 8152-8162 (2006)
http://dx.doi.org/10.1364/AO.45.008152


View Full Text Article

Enhanced HTML    Acrobat PDF (249 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Accurate recovery of tissue optical properties from in vivo spectral measurements is crucial for improving the clinical utility of optical spectroscopic techniques. The performance of inversion algorithms can be optimized for the specific fiber optic probe illumination–collection geometry. A diffusion-theory-based inversion method has been developed for the extraction of tissue optical properties from the shape of normalized tissue diffusion reflectance spectra, specifically tuned for a fiber probe that comprises seven hexagonally close-packed fibers. The central fiber of the probe goes to the spectrometer as the detecting fiber, and the surrounding six outer fibers are connected to the white-light source as illumination fibers. The accuracy of the diffusion-based inversion algorithm has been systematically assessed against Monte Carlo (MC) simulation as a function of probe geometry and tissue optical property combinations. By use of this algorithm, the spectral absorption and scattering coefficients of normal and cancerous tissue are efficiently retrieved. Although there are significant differences between the diffusion approximation and the MC simulation at short source–detector (SD) separations, we show that with our algorithm the tissue optical properties are well retrieved within the SD separation of 0.5 3 mm that is compatible with endoscopic specifications. The presented inversion method is computationally efficient for eventual real-time in vivo tissue diagnostics application.

© 2006 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media
(290.1990) Scattering : Diffusion

History
Original Manuscript: March 13, 2006
Revised Manuscript: June 29, 2006
Manuscript Accepted: July 7, 2006

Virtual Issues
Vol. 1, Iss. 12 Virtual Journal for Biomedical Optics

Citation
Jiantang Sun, Kun Fu, Adrien Wang, Alex W. H. Lin, Urs Utzinger, and Rebekah Drezek, "Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements," Appl. Opt. 45, 8152-8162 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-31-8152


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Badizadegan, V. Backman, C. W. Boone, C. P. Crum, R. R. Dasari, I. Georgakoudi, K. Keefe, K. Munger, S. M. Shapshay, E. E. Sheets, and M. S. Feld, "Spectroscopic diagnosis and imaging of invisible pre-cancer," Faraday Discuss. 126, 265-279 (2004). [CrossRef] [PubMed]
  2. R. Drezek, T. Collier, C. MacAulay, M. Follen, and R. Richards-Kortum, "Light scattering from cervical cells throughout neoplastic progression: influence of nuclear size, DNA content, and chromatin texture," J. Biomed. Opt. 8, 7-16 (2003). [CrossRef] [PubMed]
  3. R. Drezek, R. Richards-Kortum, M. A. Brewer, M. S. Feld, S. Pitris, A. Ferenczy, M. L. Faupel, and M. Follen, "Optical imaging of the cervix," Cancer Suppl. 98, 2015-2027 (2003).
  4. S. C. Gebhart, A. Mahadenvan-Jansen, and W.-C. Lin, "Experimental and simulated angular profiles of fluoresence and diffuse reflectance emission from turbid media," Appl. Opt. 44, 4884-4901 (2005). [CrossRef] [PubMed]
  5. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, V. D. Fitzmaurice, M., J., and F. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo," Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  6. J. Wu, F. Partovi, M. S. Feld, and R. P. Rava, "Diffuse reflectance from turbid media: and analytical model of photon migration," Appl. Opt. 32, 1115-1121 (1993). [CrossRef] [PubMed]
  7. R. S. Gurjar, V. Backman, L. T. Perelma, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, "Imaging human epithelial properties with polarized light scattering spectroscopy," Nat. Med. 7, 1245-1248 (2001). [CrossRef] [PubMed]
  8. J. W. Tunnell, A. E. Desjardins, L. Galindo, I. Georgakoudi, S. A. McGee, J. Mirkovic, M. G. Mueller, J. Nazemi, F. T. Nguyen, A. Wax, Q. Zhang, R. R. Dasari, and M. S. Feld, "Instrumentation for multi-modal spectroscopic diagnosis of epithelial dysplasia," Technol. Cancer Res. Treat. 2, 505-14 (2003). [PubMed]
  9. I. Georgakoudi, B. C. Jacobson, M. G. Müller, E. E. Sheets, K. Badizadegan, D. L. Carr-Locke, C. P. Crum, C. W. Boone, R. R. Dasari, J. Van Dam, and M. S. Feld, "NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes," Cancer Res. 62, 682-687 (2002). [PubMed]
  10. M. G. Müller, T. A. Valdez, I. Georgakoudi, V. Backman, C. Fuentes, S. Kabani, N. Laver, Z. Wang, C. W. Boone, R. R. Dasari, S. M. Shapshay, and M. S. Feld, "Spectroscopic detection and evaluation of morphologic and biochemical changes in early human oral carcinoma," Cancer 97, 1681-1692 (2003). [CrossRef] [PubMed]
  11. Q. Zhang, M. G. Müller, J. Wu, and M. S. Feld, "Turbidity-free fluorescence spectroscopy of biological tissue," Opt. Lett. 25, 1451-1453 (2000). [CrossRef]
  12. M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt. 28, 4286-4292 (1989). [CrossRef] [PubMed]
  13. D. E. Hyde, T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved fluorescence from depth-dependent fluorophore concentrations," Phys. Med. Biol. 46, 369-383 (2001). [CrossRef] [PubMed]
  14. T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo," Med. Phys. 19, 879-888 (1992). [CrossRef] [PubMed]
  15. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, "Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium," Appl. Opt. 37, 7401-7409 (1998). [CrossRef]
  16. M. R. Ostermeyer and S. L. Jacques, "Perturbation theory for diffuse light transport in complex biological tissues," J. Opt. Soc. Am. A 14, 255-261 (1997). [CrossRef]
  17. M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  18. A. J. Berger, V. Venugopalan, A. J. Durkin, T. Pham, and B. J. Tromberg, "Chemometric analysis of frequency-domain photon migration data: quantitative measurements of optical properties and chromophore concentrations in multicomponent turbid media," Appl. Opt. 39, 1659-1667 (2000). [CrossRef]
  19. S.-H. Tseng, C. Hayakawa, B. J. Tromberg, J. Spanier, and A. J. Durkin, "Quantitative spectroscopy of superficial turbid media," Opt. Lett. 30, 3165-3167 (2005). [CrossRef] [PubMed]
  20. D. Stasic, T. J. Farrell, and M. S. Patterson, "The use of spatially-resolved fluorescence and reflectance to determine interface depth in layered fluorophore distributions," Phys. Med. Biol. 48, 3459-3474 (2003). [CrossRef] [PubMed]
  21. J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L. P. Safonova, R. Gupta, A. Michalos, W. Mantulin, and E. Gratton, "Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach," J. Biomed. Opt. 9, 221-229 (2004). [CrossRef] [PubMed]
  22. A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997). [CrossRef]
  23. M. G. Müller, I. Georgakoudi, Q. Zhang, J. Wu, and M. S. Feld, "Intrinsic fluorescence spectroscopy in turbid media: disentangling effects of scattering and absorption," Appl. Opt. 40, 4633-4646 (2001). [CrossRef]
  24. V. Venugopalan, J. S. You, and B. J. Tromberg, "Radiative transport in the diffusion approximation: an extension for highly absorbing media and small source-detector separations," Phys. Rev. E 58, 2395-2407 (1998). [CrossRef]
  25. U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical spectroscopy," J. Biomed. Opt. 8, 127-147 (2003). [CrossRef]
  26. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, "Optical fiber probe for biomedical Raman spectroscopy," Appl. Opt. 43, 542-554 (2004). [CrossRef] [PubMed]
  27. I. J. Bigio and J. R. Mourant, "Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy," Phys. Med. Biol. 42, 803-814 (1997). [CrossRef] [PubMed]
  28. O. K. Dudko, G. H. Weiss, V. Chemomordik, and A. H. Gandjbakhche, "Photon migration in turbid media with anisotropic optical properties," Phys. Med. Biol. 49, 3979-3989 (2004). [CrossRef] [PubMed]
  29. R. Drezek, K. Sokolov, U. Utzinger, I. Boiko, A. Malpica, M. Follen, and R. Richards-Kortum, "Understanding the contributions of NADH and collagen to cervical tissue fluorescence spectra: modeling, measurements, and imliications," J. Biomed. Opt. 6, 385-396 (2001). [CrossRef] [PubMed]
  30. J. Qu, C. MacAulay, S. Lam, and B. Palcic, "Optical properties of normal and carcinomatous bronchial tissue," Appl. Opt. 33, 7397-7405 (1994). [CrossRef] [PubMed]
  31. J. Wu, M. S. Feld, and R. P. Rava, "Analytical model for extracting intrinsic fluorescence in turbid media," Appl. Opt. 32, 3585-3595 (1993). [CrossRef] [PubMed]
  32. J. R. Mourant, J. Boyers, A. H. Hielscher, and I. J. Bigio, "Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations," Opt. Lett. 21, 546-548 (1996). [CrossRef] [PubMed]
  33. M.-A. Mycek and B. W. Pogue, eds., Handbook of Biomedical Fluorescence (Marcel Dekker, 2003).
  34. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "MCML-Monte Carlo modeling of photon transport in multi-layered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  35. L.-H. Wang and S. L. Jacques, "Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media," J. Opt. Soc. Am. A 10, 1746-1752 (1993). [CrossRef]
  36. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, "CONV--convolution for response to a finite diameter photon beam incident on multilayered tissue," Comput. Methods Programs Biomed. 54, 141-150 (1997). [CrossRef]
  37. A. M. J. Wang, J. E. Bender, J. Pfefer, U. Utzinger, and R. A. Drezek, "Depth-sensitive reflectance measurements using obliquely oriented fiber probes," J. Biomed. Opt. 10, 044017 (2005). [CrossRef]
  38. S. K. Chang, N. Marin, M. Follen, and R. Richards-Kortum, "Model-based analysis of clinical fluorescence spectroscopy for in vivo detection of cervical intraepithelial dysplasia," J. Biomed. Opt. 11, 024008 (2006). [CrossRef] [PubMed]
  39. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998). [CrossRef]
  40. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, "Measuring absorption coefficients in small volumes of highly scattering media: source-detector separations for which path lengths do not depend on scattering properties," Appl. Opt. 36, 5655-5661 (1997). [CrossRef] [PubMed]
  41. J. R. Mourant, T. M. Johnson, G. Los, and I. J. Bigio, "Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements," Phys. Med. Biol. 44, 1397-1417 (1999). [CrossRef] [PubMed]
  42. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, "Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin," Clin. Chem. 37, 1633-1638 (1991). [PubMed]
  43. S. Prahl, "Optical absorption of hemoglobin," Oregon Medical Laser Center, Portland, Oreg.; available at http://omlc.ogi.edu/spectra/hemoglobin/index.html (1998).
  44. S. K. Chang, D. Arifler, R. Drezek, M. Follen, and R. Richards-Kortum, "Analytical model to describe fluorescence spectra of normal and pre-neoplastic epithelial tissue: comparison with Monte Carlo simulations and clinical measurements," J. Biomed. Opt. 9, 511-522 (2004). [CrossRef] [PubMed]
  45. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, "Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain," Opt. Lett. 30, 1354-1356 (2005). [CrossRef] [PubMed]
  46. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, and H. Van Den Gergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 797-791 (1998). [CrossRef]
  47. W. F. Cheong, S. A. Prahl, and A. J. Welch, "Review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  48. G. Lubawy and N. Ramanujam, "Endoscopically compatible near-infrared photon migration probe," Opt. Lett. 29, 2022-2024 (2004). [CrossRef] [PubMed]
  49. A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, and B. C. Wilson, "Spatially resolved absolute diffuse reflectance measurements for noninvasive determination of the optical scattering and absorption coefficients of biological tissue," Appl. Opt. 35, 2304-2314 (1996). [CrossRef] [PubMed]
  50. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited