OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 1 — Jan. 19, 2007

Vectorial modeling of near-field imaging with uncoated fiber probes: transfer function and resolving power

Niels Gregersen, Bjarne Tromborg, and Sergey I. Bozhevolnyi  »View Author Affiliations


Applied Optics, Vol. 45, Issue 34, pp. 8739-8747 (2006)
http://dx.doi.org/10.1364/AO.45.008739


View Full Text Article

Enhanced HTML    Acrobat PDF (993 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using exact 3D vectorial simulations of radiation coupling into uncoated dielectric fiber probes, we calculate amplitude transfer functions for conical single-mode fiber tips at the light wavelength of 633   nm . The coupling efficiency of glass fiber tips is determined in a wide range of spatial frequencies of the incident radiation for opening angles varying from 30° to 120°. The resolution in near-field imaging with these tips is considered for field distributions limited in both direct and spatial-frequency space. The characteristics of the transfer functions describing the relation between probed optical fields and near-field images are analyzed in detail. The importance of utilizing a perfectly sharp tip is also examined.

© 2006 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(110.4850) Imaging systems : Optical transfer functions
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Imaging Systems

History
Original Manuscript: March 1, 2006
Revised Manuscript: July 14, 2006
Manuscript Accepted: July 24, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Niels Gregersen, Bjarne Tromborg, and Sergey I. Bozhevolnyi, "Vectorial modeling of near-field imaging with uncoated fiber probes: transfer function and resolving power," Appl. Opt. 45, 8739-8747 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-34-8739


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett. 44, 651-653 (1984). [CrossRef]
  2. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, "Development of a 500 Å spatial resolution light microscope. I. Light is efficiently transmitted through λ/16 diameter apertures," Ultramicroscopy 13, 227-231 (1984). [CrossRef]
  3. J. M. Vigoureux and D. Courjon, "Detection of nonradiative fields in light of the Heisenberg uncertainty principle and the Rayleigh criterion," Appl. Opt. 31, 3170-3177 (1992). [CrossRef] [PubMed]
  4. D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, 2003).
  5. E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, "Breaking the diffraction barrier: optical microscopy on a nanometric scale," Science 251, 1468-1470 (1991). [CrossRef] [PubMed]
  6. B. Hecht, H. Bielefeldt, L. Novotny, Y. Inouye, and D. W. Pohl, "Local excitation, scattering and interference of surface plasmons," Phys. Rev. Lett. 77, 1889-1892 (1996). [CrossRef] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, "Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics," Phys. Rev. B 66, 235204 (2002). [CrossRef]
  8. D. Van Labeke and D. Barchiesi, "Probes for scanning tunneling optical microscopy: a theoretical comparison," J. Opt. Soc. Am. A 10, 2193-2201 (1993). [CrossRef]
  9. R. Carminati and J.-J. Greffet, "Two-dimensional numerical simulation of the photon scanning tunneling microscope. Concept of transfer function," Opt. Commun. 116, 316-321 (1995). [CrossRef]
  10. S. I. Bozhevolnyi, B. Vohnsen, E. A. Bozhevolnaya, and S. Berntsen, "Self-consistent model for photon scanning tunneling microscopy: implications for image formation and light scattering near a phase-conjugating mirror," J. Opt. Soc. Am. A 13, 2381-2392 (1996). [CrossRef]
  11. J.-J. Greffet and R. Carminati, "Image formation in near-field optics," Prog. Surf. Sci. 56, 133-237 (1997). [CrossRef]
  12. S. I. Bozhevolnyi, B. Vohnsen, and E. A. Bozhevolnaya, "Transfer functions in collection scanning near-field optical microscopy," Opt. Commun. 172, 171-179 (1999). [CrossRef]
  13. S. I. Bozhevolnyi, "Near-field mapping of surface polariton fields," J. Microsc. 202, 313-319 (2000). [CrossRef]
  14. J. C. Weeber, F. de Fornel, and J. P. Goudonnet, "Numerical study of the tip-sample interaction in the photon scanning tunneling microscope," Opt. Commun. 126, 285-292 (1996). [CrossRef]
  15. J. C. Weeber, E. Bourillot, A. Dereux, J. P. Goudonnet, Y. Chen, and C. Girard, "Observation of light confinement effects with a near-field optical microscope," Phys. Rev. Lett. 77, 5332-5335 (1996). [CrossRef] [PubMed]
  16. J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg, and C. Girard, "Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles," Phys. Rev. Lett. 82, 2590-2593 (1999). [CrossRef]
  17. S. I. Bozhevolnyi, V. A. Markel, V. Coello, W. Kim, and V. M. Shalaev, "Direct observation of localized dipolar excitations on rough nanostructured surfaces," Phys. Rev. B 58, 11441-11448 (1998). [CrossRef]
  18. A. Nesci, R. Dändliker, M. Salt, and H. P. Herzig, "Measuring amplitude and phase distributions of fields generated by gratings with subwavelength resolution," Opt. Commun. 205, 229-238 (2002). [CrossRef]
  19. N. Gregersen, B. Tromborg, V. S. Volkov, S. I. Bozhevolnyi, and J. Holm, "Topography characterization of a deep grating using near-field imaging," Appl. Opt. 45, 117-121 (2006). [CrossRef] [PubMed]
  20. S. Goumri-Said, L. Salomon, J. P. Dufour, F. de Fornel, and A. V. Zayats, "Numerical simulations of photon scanning tunneling microscopy: role of a probe tip geometry in image formation," Opt. Commun. 244, 245-258 (2005). [CrossRef]
  21. I. P. Radko, S. I. Bozhevolnyi, and N. Gregersen, "Transfer function and near-field detection of evanescent waves," Appl. Opt. 45, 4054-4061 (2006). [CrossRef] [PubMed]
  22. P. Bienstman and R. Baets, "Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers," Opt. Quantum Electron. 33, 327-341 (2001). [CrossRef]
  23. A. Yariv, Optical Electronics in Modern Communications (Oxford U. Press, 1997).
  24. J. Schöfer, M. J. Gregor, P. G. Blome, and R. G. Ulbrich, "Influence of aperture diameter on image contrast and resolution in scanning near-field optical microscopy," J. Appl. Phys. 81, 5871-5877 (1997). [CrossRef]
  25. S. I. Bozhevolnyi and E. A. Bozhevolnaya, "Near-field imaging of the interference pattern of counterpropagating evanescent waves," Opt. Lett. 24, 747-749 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited