OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 1 — Jan. 19, 2007

Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection

John D. Hybl, Shane M. Tysk, Shaun R. Berry, and Michael P. Jordan  »View Author Affiliations


Applied Optics, Vol. 45, Issue 34, pp. 8806-8814 (2006)
http://dx.doi.org/10.1364/AO.45.008806


View Full Text Article

Enhanced HTML    Acrobat PDF (1397 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Methods for accurately characterizing aerosols are required for detecting biological warfare agents. Currently, fluorescence-based biological agent sensors provide adequate detection sensitivity but suffer from high false-alarm rates. Combining single-particle fluorescence analysis with laser-induced breakdown spectroscopy (LIBS) provides additional discrimination and potentially reduces false-alarm rates. A transportable UV laser-induced fluorescence-cued LIBS test bed has been developed and used to evaluate the utility of LIBS for biological-agent detection. Analysis of these data indicates that LIBS adds discrimination capability to fluorescence-based biological-agent detectors. However, the data also show that LIBS signatures of biological agent simulants are affected by washing. This may limit the specificity of LIBS and narrow the scope of its applicability in biological-agent detection.

© 2006 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(300.6210) Spectroscopy : Spectroscopy, atomic
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: March 10, 2006
Revised Manuscript: July 6, 2006
Manuscript Accepted: August 11, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
John D. Hybl, Shane M. Tysk, Shaun R. Berry, and Michael P. Jordan, "Laser-induced fluorescence-cued, laser-induced breakdown spectroscopy biological-agent detection," Appl. Opt. 45, 8806-8814 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-34-8806


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Jaenicke, "Tropospheric aerosols," in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed. (Academic, 1993), pp. 1-31.
  2. C. A. Primmerman, "Detection of Biological Agents," Lincoln Lab. J. 12, 3-32 (2000).
  3. L. Mariey, J. P. Signolle, C. Amiel, and J. Travert, "Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics," Vib. Spectrosc. 26, 151-159 (2001). [CrossRef]
  4. A. Sengupta, M. L. Laucks, N. Dildine, E. Drapala, and E. J. Davis, "Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)," J. Aerosol Sci. 36, 651-664 (2005). [CrossRef]
  5. J. N. Ullom, M. Frank, E. E. Gard, J. M. Horn, S. E. Labov, K. Langry, F. Magnotta, K. A. Stanion, C. A. Hack, and W. H. Benner, "Discrimination between bacterial spore types using time-of-flight mass spectrometry and matrix free infrared laser desorption and ionization," Anal. Chem. 73, 2331-2337 (2001). [CrossRef] [PubMed]
  6. D. C. S. Beddows and H. H. Telle, "Prospects of real-time single-particle biological aerosol analysis: A comparison between laser-induced breakdown spectroscopy and aerosol time-of-flight mass spectrometry," Spectrochim. Acta Part B 60, 1040-1059 (2005). [CrossRef]
  7. J. D. Hybl, G. A. Lithgow, and S. G. Buckley, "Laser-induced breakdown spectroscopy detection and classification of biological aerosols," Appl. Spectrosc. 57, 1207-1215 (2003). [CrossRef] [PubMed]
  8. R. G. Pinnick, S. C. Hill, Y. L. Pan, and R. K. Chang, "Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon," Atmos. Environ. 38, 1657-1672 (2004). [CrossRef]
  9. A. R. Boyain-Goitia, D. C. S. Beddows, B. C. Griffiths, and H. H. Telle, "Single-pollen analysis by laser-induced breakdown spectroscopy and Raman microscopy," Appl. Opt. 42, 6119-6132 (2003). [CrossRef] [PubMed]
  10. T. Kim, Z. G. Specht, P. S. Vary, and C. T. Lin, "Spectral fingerprints of bacterial strains by laser-induced breakdown spectroscopy," J. Phys. Chem. B 108, 5477-5482 (2004). [CrossRef]
  11. S. Morel, N. Leone, P. Adam, and J. Amouroux, "Detection of bacteria by time-resolved laser-induced breakdown spectroscopy," Appl. Opt. 42, 6184-6191 (2003). [CrossRef] [PubMed]
  12. A. C. Samuels, F. C. DeLucia, K. L. McNesby, and A. W. Miziolek, "Laser-induced breakdown spectroscopy of bacterial spores, molds, pollens, and protein: initial studies of discrimination potential," Appl. Opt. 42, 6205-6209 (2003). [CrossRef] [PubMed]
  13. J. E. Carranza, B. T. Fisher, G. D. Yoder, and D. W. Hahn, "On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy," Spectrochim. Acta Part B 56, 851-864 (2001). [CrossRef]
  14. M. Z. Martin, M. D. Cheng, and R. C. Martin, "Aerosol measurement by laser-induced plasma technique: a review," Aerosol Sci. Technol. 31, 409-421 (1999). [CrossRef]
  15. V. Hohreiter, A. J. Ball, and D. W. Hahn, "Effects of aerosols and laser cavity seeding on spectral and temporal stability of laser-induced plasmas: application to LIBS," J. Anal. At. Spectrom. 19, 1289-1294 (2004). [CrossRef]
  16. R. C. Sullivan and K. A. Prather, "Recent advances in our understanding of atmospheric chemistry and climate made possible by on-line aerosol analysis instrumentation," Anal. Chem. 77, 3861-3885 (2005). [CrossRef] [PubMed]
  17. J. J. Zayhowski and C. Dill, "Diode-pumped passively Q-switched picosecond microchip lasers," Opt. Lett. 19, 1427-1429 (1994). [CrossRef] [PubMed]
  18. G. A. Lithgow and S. G. Buckley, "Influence of particle location within plasma and focal volume on precision of single-particle laser-induced breakdown spectroscopy measurements," Spectrochim. Acta Part B 60, 1060-1069 (2005). [CrossRef]
  19. G. A. Lithgow and S. G. Buckley, "Effects of focal volume and spatial inhomogeneity on uncertainty in single-aerosol laser-induced breakdown spectroscopy measurements," Appl. Phys. Lett. 87, 011501 (2005). [CrossRef]
  20. G. Gould and A. Hurst, The Bacterial Spore (Academic 1969).
  21. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, "Bio-aerosol fluorescence sensor," Field Anal. Chem. Technol. 3, 240-248 (1999). [CrossRef]
  22. B. F. J. Manly, Multivariate Statistical Methods: A Primer (Chapman & Hall, 1986).
  23. P. B. Dixon and D. W. Hahn, "Feasibility of detection and identification of individual bioaerosols using laser-induced breakdown spectroscopy," Anal. Chem. 77, 631-638 (2005). [CrossRef] [PubMed]
  24. J. Scaffidi, S. M. Angel, and D. A. Cremers, "Emission enhancement mechanisms in dual-pulse LIBS," Anal. Chem. 78, 24-32 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited