OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 1 — Jan. 19, 2007

Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing

Menghua Wang  »View Author Affiliations


Applied Optics, Vol. 45, Issue 35, pp. 8951-8963 (2006)
http://dx.doi.org/10.1364/AO.45.008951


View Full Text Article

Enhanced HTML    Acrobat PDF (5541 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.

© 2006 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1110) Atmospheric and oceanic optics : Aerosols
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(260.5430) Physical optics : Polarization
(280.0280) Remote sensing and sensors : Remote sensing and sensors

History
Original Manuscript: April 10, 2006
Revised Manuscript: June 9, 2006
Manuscript Accepted: August 4, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Menghua Wang, "Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing," Appl. Opt. 45, 8951-8963 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-35-8951


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. R. Gordon, "Atmospheric correction of ocean color imagery in the Earth Observing System era," J. Geophys. Res. 102, 17,081-17,106 (1997). [CrossRef]
  2. H. R. Gordon and M. Wang, "Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm," Appl. Opt. 33, 443-452 (1994). [CrossRef] [PubMed]
  3. H. R. Gordon, J. W. Brown, and R. H. Evans, "Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner," Appl. Opt. 27, 862-871 (1988). [CrossRef] [PubMed]
  4. H. R. Gordon and M. Wang, "Surface roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh scattering component," Appl. Opt. 31, 4247-4260 (1992). [CrossRef] [PubMed]
  5. M. Wang, "The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness," Int. J. Remote Sens. 23, 2693-2702 (2002). [CrossRef]
  6. M. Wang, "A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure," Int. J. Remote Sens. 26, 5651-5663 (2005). [CrossRef]
  7. H. Yang and H. R. Gordon, "Remote sensing of ocean color: assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance," Appl. Opt. 36, 7887-7897 (1997). [CrossRef]
  8. M. Wang and S. Bailey, "Correction of the sun glint contamination on the SeaWiFS ocean and atmosphere products," Appl. Opt. 40, 4790-4798 (2001). [CrossRef]
  9. R. S. Fraser, S. Mattoo, E. N. Yeh, and C. R. McClain, "Algorithm for atmospheric and glint corrections of satellite measurements of ocean pigment," J. Geophys. Res. 102, 17,107-17,118 (1997). [CrossRef]
  10. R. Frouin, M. Schwindling, and P. Y. Deschamps, "Spectral reflectance of sea foam in the visible and near infrared: in situ measurements and remote sensing implications," J. Geophys. Res. 101, 14,361-14,371 (1996). [CrossRef]
  11. H. R. Gordon and M. Wang, "Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors," Appl. Opt. 33, 7754-7763 (1994). [CrossRef] [PubMed]
  12. K. D. Moore, K. J. Voss, and H. R. Gordon, "Spectral reflectance of whitecaps: Their contribution to water-leaving radiance," J. Geophys. Res. 105, 6493-6499 (2000). [CrossRef]
  13. D. Antoine and A. Morel, "A multiple scattering algorithm for atmospheric correction of remotely sensed ocean colour (MERIS instrument): principle and implementation for atmospheres carrying various aerosols including absorbing ones," Int. J. Remote Sens. 20, 1875-1916 (1999). [CrossRef]
  14. H. Fukushima, A. Higurashi, Y. Mitomi, T. Nakajima, T. Noguchi, T. Tanaka, and M. Toratani, "Correction of atmospheric effects on ADEOS/OCTS ocean color data: algorithm description and evaluation of its performance," J. Oceanogr. 54, 417-430 (1998). [CrossRef]
  15. C. R. McClain, G. C. Feldman, and S. B. Hooker, "An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series," Deep-Sea Res., Part I 51, 5-42 (2004). [CrossRef]
  16. V. V. Salomonson, W. L. Barnes, P. W. Maymon, H. E. Montgomery, and H. Ostrow, "MODIS: advanced facility instrument for studies of the Earth as a system," IEEE Trans. Geosci. Remote Sens. 27, 145-152 (1989). [CrossRef]
  17. C. Cox and W. Munk, "Measurements of the roughness of the sea surface from photographs of the sun's glitter," J. Opt. Soc. Am. 44, 838-850 (1954). [CrossRef]
  18. M. Wang, K. D. Knobelspiesse, and C. R. McClain, "Study of the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products," J. Geophys. Res. 110, D10S06, doi: (2005). [CrossRef]
  19. G. M. Hale and M. R. Querry, "Optical constants of water in the 200 nm to 200 μm wavelength region," Appl. Opt. 12, 555-563 (1973). [CrossRef] [PubMed]
  20. M. Wang and W. Shi, "Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: two case studies," Geophys. Res. Lett. 32, L13606-L13610, doi: (2005). [CrossRef]
  21. K. G. Ruddick, F. Ovidio, and M. Rijkeboer, "Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters," Appl. Opt. 39, 897-912 (2000). [CrossRef]
  22. D. A. Siegel, M. Wang, S. Maritorena, and W. Robinson, "Atmospheric correction of satellite ocean color imagery: the black pixel assumption," Appl. Opt. 39, 3582-3591 (2000). [CrossRef]
  23. R. P. Stumpf, R. A. Arnone, R. W. Gould, P. M. Martinolich, and V. Ransibrahmanakul, "A partially coupled ocean-atmosphere model for retrieval of water-leaving radiance from SeaWiFS in coastal waters," Vol. 22 of NASA Technical Memorandum 2003-206892, S. B. Hooker and E. R. Firestone, eds. (NASA Goddard Space Flight Center, 2003).
  24. M. Wang, "Extrapolation of the aerosol reflectance from the near-infrared to the visible: the single-scattering epsilon versus multiple-scattering epsilon method," Int. J. Remote Sens. 25, 3637-3650 (2004). [CrossRef]
  25. H. R. Gordon and D. K. Clark, "Clear water radiances for atmospheric correction of coastal zone color scanner imagery," Appl. Opt. 20, 4175-4180 (1981). [CrossRef] [PubMed]
  26. A. Morel and G. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of bidirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996). [CrossRef] [PubMed]
  27. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988). [CrossRef]
  28. A. Morel, K. J. Voss, and B. Gentili, "Bidirectional reflectance of oceanic waters: a comparison of modeled and measured upward radiance fields," J. Geophys. Res. 100, 13,143-13,150 (1995). [CrossRef]
  29. H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Appl. Opt. 44, 241-248 (2005). [CrossRef] [PubMed]
  30. A. Morel and G. Gentili, "Diffuse reflectance of oceanic waters: its dependence on Sun angle as influenced by the molecular scattering contribution," Appl. Opt. 30, 4427-4438 (1991). [CrossRef] [PubMed]
  31. M. Wang, "Effects of ocean surface reflectance variation with solar elevation on normalized water-leaving radiance," Appl. Opt. 45, 4122-4128 (2006). [CrossRef] [PubMed]
  32. S. A. Garver and D. A. Siegel, "Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation: 1. Time series from the Sargasso Sea," J. Geophys. Res. 102, 18,607-18,625 (1997). [CrossRef]
  33. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002). [CrossRef] [PubMed]
  34. S. Maritorena, D. A. Siegel, and A. Peterson, "Optimization of a semianalytical ocean color model for global scale applications," Appl. Opt. 41, 2705-2714 (2002). [CrossRef] [PubMed]
  35. A. Morel, "Optical modeling of the upper ocean in relation to its biogenous matter content (case 1 waters)," J. Geophys. Res. 93, 10,749-10,768 (1988). [CrossRef]
  36. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24,937-24,953 (1998). [CrossRef]
  37. K. L. Carder, F. R. Chen, J. P. Cannizzaro, J. W. Campbell, and B. G. Mitchell, "Performance of the MODIS semi-analytical ocean color algorithm for chlorophyll-a," Adv. Space Res. 33, 1152-1159 (2004). [CrossRef]
  38. M. Wang, "Atmospheric correction of the second generation ocean color sensors," Ph.D. dissertation (University of Miami, 1991).
  39. H. C. van de Hulst, Multiple Light Scattering (Academic, 1980), p. 739.
  40. M. Wang, "An efficient method for multiple radiative transfer computations and the lookup table generation," J. Quant. Spectrosc. Radiat. Transf. 78, 471-480 (2003). [CrossRef]
  41. M. Wang, "Light scattering from spherical-shell atmosphere: Earth curvature effects measured by SeaWiFS," Eos Trans. Am. Geophys. Union 84, 529, 530, 534 (2003). [CrossRef]
  42. E. P. Shettle and R. W. Fenn, "Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties," Report AFGL-TR-79-0214 (U.S. Air Force Geophysics Laboratory, 1979).
  43. K. D. Knobelspiesse, C. Pietras, G. S. Fargion, M. Wang, R. Frouin, M. A. Miller, A. Subramaniam, and W. M. Balch, "Maritime aerosol optical properties measured by handheld sun photometers," Remote Sens. Environ. 93, 87-106 (2004). [CrossRef]
  44. M. Schwindling, P. Y. Deschamps, and R. Frouin, "Verification of aerosol models for satellite ocean color remote sensing," J. Geophys. Res. 103, 24,919-24,935 (1998). [CrossRef]
  45. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutsker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-523 (2002). [CrossRef]
  46. S. Chandrasekhar, Radiative Transfer (Oxford U. Press, 1950), p. 393.
  47. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), p. 469.
  48. M. Wang and H. R. Gordon, "A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS," Remote Sens. Environ. 50, 231-239 (1994). [CrossRef]
  49. H. R. Gordon, "In-orbit calibration strategy for ocean color sensors," Rem. Sens. Environ. 63, 265-278 (1998). [CrossRef]
  50. J. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, "Calibration of SeaWiFS. II: Vicarious techniques," Appl. Opt. 40, 6701-6718 (2001). [CrossRef]
  51. M. Wang and H. R. Gordon, "Calibration of ocean color scanners: How much error is acceptable in the near-infrared," Remote Sens. Environ. 82, 497-504 (2002). [CrossRef]
  52. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, "Validation of atmospheric correction over the ocean," J. Geophys. Res. 102, 17,209-17,217 (1997). [CrossRef]
  53. M. Wang and B. A. Franz, "Comparing the ocean color measurements between MOS and SeaWiFS: a vicarious intercalibration approach for MOS," IEEE Trans. Geosci. Remote Sens. 38, 184-197 (2000). [CrossRef]
  54. M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, "Ocean color optical property data derived from the Japanese ocean color and temperature scanner and the French polarization and directionality of the earth's Reflectances: a comparison study," Appl. Opt. 41, 974-990 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited