OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 1 — Jan. 19, 2007

Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath

Jagadeeshwari Manne, Oleksandr Sukhorukov, Wolfgang Jäger, and John Tulip  »View Author Affiliations


Applied Optics, Vol. 45, Issue 36, pp. 9230-9237 (2006)
http://dx.doi.org/10.1364/AO.45.009230


View Full Text Article

Enhanced HTML    Acrobat PDF (1272 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Breath analysis can be a valuable, noninvasive tool for the clinical diagnosis of a number of pathological conditions. The detection of ammonia in exhaled breath is of particular interest for it has been linked to kidney malfunction and peptic ulcers. Pulsed cavity ringdown spectroscopy in the mid-IR region has developed into a sensitive analytical technique for trace gas analysis. A gas analyzer based on a pulsed mid-IR quantum cascade laser operating near 970 cm 1 has been developed for the detection of ammonia levels in breath. We report a sensitivity of 50 parts per billion with a 20 s time resolution for ammonia detection in breath with this system. The challenges and possible solutions for the quantification of ammonia in human breath by the described technique are discussed.

© 2006 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(280.3420) Remote sensing and sensors : Laser sensors
(300.1030) Spectroscopy : Absorption
(300.6340) Spectroscopy : Spectroscopy, infrared

History
Original Manuscript: April 4, 2006
Revised Manuscript: August 16, 2006
Manuscript Accepted: September 1, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Jagadeeshwari Manne, Oleksandr Sukhorukov, Wolfgang Jäger, and John Tulip, "Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath," Appl. Opt. 45, 9230-9237 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-36-9230


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. R. Narasimhan, W. Goodman, and C. K. N. Patel, "Correlation of breath ammonia with blood urea nitrogen and creatinine during haemodialysis," Proc. Natl. Acad. Sci. U.S.A. 98, 4617-4621 (2001). [CrossRef]
  2. P. Spanel, S. Davies, and D. Smith, "Quantification of ammonia in human breath by the selected ion flow tube analytical method using H3O+ and O2+ precursor ions," Rapid Commun. Mass Spectrom. 12, 763-766 (1998). [CrossRef]
  3. J. Schubert, W. Miekisch, and G. Noldge-Schomburg, "VOC breath markers in critically ill patients: potentials and limitations," in Breath Analysis for Clinical Diagnosis and Therapeutic Monitoring, A. Amann and D. Smith, eds. (World Scientific, 2005).
  4. Y. A. Bakhirkin, A. A. Kosterev, C. Roller, R. F. Curl, and F. K. Tittel, "Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection," Appl. Opt. 43, 2257-2266 (2004). [CrossRef]
  5. M. B. Pushkarsky, M. E. Webber, O. Baghdassarian, L. R. Narsimhan, and C. K. N. Patel, "Laser-based photoacoustic ammonia sensors for industrial applications," Appl. Phys. B 75, 391-396 (2002). [CrossRef]
  6. M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, "Ultra-sensitive ambient ammonia detection using CO2-laser-based photoacoustic spectroscopy," Appl. Phys. B 77, 381-385 (2003). [CrossRef]
  7. M. E. Webber, M. Pushkarsky, and C. K. N. Patel, "Fiber-amplifier-enhanced photoacoustic spectroscopy with near-infrared tunable diode lasers," Appl. Opt. 42, 2119-2126 (2003).
  8. K. D. Skeldon, C. Patterson, C. A. Wyse, G. M. Gibson, M. J. Padgett, C. Longbottom, and L. C. McMillan, "The potential offered by real-time, high sensitivity monitoring of ethane in breath and some pilot studies using optical spectroscopy," J. Opt. A , Pure Appl. Opt. 7, S376-S384 (2005).
  9. C. Roller, K. Namjou, J. Jeffers, W. Potter, P. J. McCann, and J. Grego, "Simultaneous NO and CO measurement in human breath with a single IV-VI mid-infrared laser," Opt. Lett. 27, 107-109 (2002).
  10. G. von Basum, H. Dahnke, D. Halmer, P. Hering, and M. Murtz, "Online recording of ethane traces in human breath via infrared laser spectroscopy," J. Appl. Physiol. 95, 2583-2590 (2003).
  11. F. Capasso, C. Gmachl, D. L. Sivco, and A. Y. Cho, "Quantum cascade lasers," Phys. World 12, 27-33 (1999).
  12. A. A. Kosterev and F. K. Tittel, "Chemical sensors based on quantum cascade lasers," IEEE J. Quantum Electron. 38, 582-591 (2002). [CrossRef]
  13. A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, "Trace-gas detection in ambient air with a thermoelectrically cooled, pulsed quantum-cascade distributed feedback laser," Appl. Opt. 39, 6866-6872 (2000).
  14. G. Berden, R. Peeters, and G. Meijer, "Cavity-ringdown spectroscopy: experimental schemes and applications," Int. Rev. Phys. Chem. 19, 565-607 (2000). [CrossRef]
  15. O. Sukhorukov, A. Lytkine, J. Manne, J. Tulip, and W. Jäger, "Cavity ring-down spectroscopy with a pulsed distributed feedback quantum cascade laser," in Quantum Sensing and Nanophotonic Devices III, M. Razeghi and G. J. Brown, eds., Proc. SPIE 6127, 61270A (2006).
  16. D. Romanini and K. K. Lehmann, "Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven, and eight stretching quanta," J. Chem. Phys. 99, 6287-6301 (1993). [CrossRef]
  17. P. Zalicki and R. N. Zare, "Cavity ring-down spectroscopy for quantitative absorption measurements," J. Chem. Phys. 102, 2708-2717 (1995). [CrossRef]
  18. R. T. Jongma, M. G. H. Boogaarts, I. Holleman, and G. Meijer, "Trace gas detection with cavity ring down spectroscopy," Rev. Sci. Instrum. 66, 2821-33 (1995). [CrossRef]
  19. J. J. Scherer, J. B. Paul, A. O'Keefe, and R. J. Saykally, "Cavity ringdown laser absorption spectroscopy: history, development, and application to pulsed molecular beams," Chem. Rev. 97, 25-51 (1997). [CrossRef]
  20. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001," J. Quant. Spectrosc. Radiat. Transf. 82, 5-44 (2003). [CrossRef]
  21. R. E. Roberts, J. E. A. Selby, and L. M. Biberman, "Infrared continuum absorption by atmospheric water vapor in the 8-12 µ window," Appl. Opt. 15, 2085-2090 (1976).
  22. S. A. Clough, F. X. Kneizys, and R. W. Davies, "Line shape and water vapor continuum," Atmos. Res. 23, 229-241 (1989). [CrossRef]
  23. E. Normand, G. Duxbury, and N. Langford, "Characterization of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer," Opt. Commun. 197, 115-120 (2001). [CrossRef]
  24. A. Lytkine, J. Manne, W. Jäger, and J. Tulip, "Characterization of a 10.3-m pulsed DFB quantum cascade laser," Spectrochim. Acta Part A 63, 947-951 (2006). [CrossRef]
  25. D. A. Skoog, F. G. Holler, and T. A. Nieman, Principles of Instrumental Analysis (Saunders College, 1998).
  26. D. Smith, P. Spanel, and S. Davies, "Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study," J. Appl. Physiol. 87, 1583-1588 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited