OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

High-resolution photothermal microscope: a sensitive tool for the detection of isolated absorbing defects in optical coatings

Bertrand Bertussi, Jean-Yves Natoli, and Mireille Commandré  »View Author Affiliations


Applied Optics, Vol. 45, Issue 7, pp. 1410-1415 (2006)
http://dx.doi.org/10.1364/AO.45.001410


View Full Text Article

Enhanced HTML    Acrobat PDF (1102 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The photothermal deflection technique allows us to highlight the presence of inhomogeneities of absorption in optical components. This nondestructive tool is of great interest to the study of the role of contaminants, inclusions, and impurities in the laser-induced damage process. We show that the detection of nanometer-sized isolated absorbing defects requires the development of an adapted photothermal setup with high detectivity and high spatial resolution. Thus it is essential to improve the resolving power up to its theoretical limit.

© 2006 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(300.1030) Spectroscopy : Absorption
(350.5340) Other areas of optics : Photothermal effects
(350.5730) Other areas of optics : Resolution

ToC Category:
Characterization of Optical Coatings

History
Original Manuscript: March 1, 2005
Manuscript Accepted: July 28, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Bertrand Bertussi, Jean-Yves Natoli, and Mireille Commandré, "High-resolution photothermal microscope: a sensitive tool for the detection of isolated absorbing defects in optical coatings," Appl. Opt. 45, 1410-1415 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-7-1410


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. H. Choi, J. Meijer, T. Msuzawa, and D. H. Kim, 'Excimer laser micromachining for 3D microstructure,' J. Mater. Process. Technol. 149, 561-566 (2004). [CrossRef]
  2. C. Fenic, R. Dabu, C. Blanaru, and C. Luculescu, 'Preliminary studies of material surface cleaning with a multi-pulse passively Q-switched Nd:YAG laser,' Opt. Laser Technol. 36, 125-130 (2004). [CrossRef]
  3. A. Bettinger and M. Decroisette, 'Laser megajoule project and impact on the inertial fusion program,' Fusion Eng. Design 46, 457-460 (1999). [CrossRef]
  4. N. Bloembergen, 'Role of cracks, pores and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,' Appl. Opt. 12, 661-664 (1973).
  5. A. E. Chmel, 'Fatigue laser-induced damage in transparent materials,' Mater. Sci. Eng. B 49, 175-190 (1997). [CrossRef]
  6. J. Dijon, T. Poiroux, and C. Desrumaux, 'Nano-absorbing centers: a key point of laser damage in thin film,' in Laser-Induced Damage in Optical Materials, H. E. Bennett, H. A. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2966, 315-325 (1997). [CrossRef]
  7. E. Stenzel, S. Gogoll, M. Huisinga, H. Johansen, G. Kästner, M. Riechling, and E. Matthias, 'Laser damage of alkaline-earth fluorides at 248 nm and the influence of polishing grades,' Appl. Surf. Sci. 109-110, 162-167 (1997). [CrossRef]
  8. B. Bertussi, J. Y. Natoli, and M. Commandré, 'Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,' Opt. Commun. 242, 227-231 (2004). [CrossRef]
  9. J. Neauport, D. Valla, J. Duchesne, P. Bouchut, L. Lamaignere, J. Bigarre, and N. Daurios, 'Building high damage threshold surfaces at 351 nm,' in Optical Fabrication Testing and Metrology, R. Geyl, D. Rimmer, and L. Wang eds., Proc. SPIE 5252, 131-139 (2004).
  10. L. Gallais, P. Voarino, and C. Amra, 'Optical measurement of size and complex index of laser damage precursors: the inverse problem,' J. Opt. Soc. Am. B 21, 1073-1080 (2004). [CrossRef]
  11. M. R. Kozlowski and R. Chow, 'The role of defects in laser multilayer coatings,' in Laser-Induced Damage in Optical Materials, H. E. Bennett, H. A. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 2114, 640-649 (1994). [CrossRef]
  12. M. Poulingue, 'Le role des nodules dans l'endommagement laser de miroirs 1.06 m,' Ph.D. thesis (Institut National Polytechnique de Grenoble, Grenoble, France, 1999).
  13. M. Commandre, J. Y. Natoli, C. Amra, A. During, and L. Gallais, 'Photothermal microscopy and laser damage in optical components,' in Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies, A. Duparre and B. Singh, eds., Proc. SPIE 5188, 169-181 (2003). [CrossRef]
  14. M. Kozlowski, L. Battersby, and S. Demos, 'Luminescence investigation of SiO2 surfaces damaged by 0.35 mm laser illumination,' in Laser-Induced Damage in Optical Materials, H. E. Bennett, H. A. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 3902, 138-144 (2000). [CrossRef]
  15. S. Demos, M. Nostrand, M. Staggs, and C. Carr, 'Investigation of fluorescence mi croscopy as a tool for noninvasive detection of surface contamination and precursors to laser-induced damage,' Appl. Opt. 41, 1977-1983 (2002).
  16. C. Stolz, D. Chinn, R. Huber, L. Weinzapfel, and Z. Wu, 'Photothermal multi-pixel imaging microscope,' In Laser-Induced Damage in Optical Materials, H. E. Bennett, H. A. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, eds., Proc. SPIE 4347, 155-168 (2001). [CrossRef]
  17. A. During, C. Fossati, and M. Commandre, 'Photothermal microscopy for imaging sub-micronic defects in optical material,' Opt. Commun. 36, 279-286 (2004). [CrossRef]
  18. F. Bonneau, P. Combis, J. L. Rullier, J. Vierne, H. Ward, M. Pellin, M. Savina, M. Broyer, E. Cottancin, J. Tuaillon, M. Pellarin, L. Gallais, J. Y. Natoli, M. Perra, H. Bercegol, L. Lamaignère, M. Loiseau, and J. Donohue, 'Study of UV laser interaction with gold nanoparticles embedded in silica,' Appl. Phys. B 75, 803-815 (2002). [CrossRef]
  19. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, 'Photothermal imaging nanometer-sized metal particles among scatterers,' Science 297, 1160-1163 (2002). [CrossRef]
  20. A. During, 'Microscopie phothermique et endommagement laser,' Ph.D. thesis (Universite Aix-Marseille III, Marseille, France, 2002).
  21. M. Commandre and P. Roche, 'Characterization of optical coatings by photothermal deflection,' Appl. Opt. 35, 5021-5034 (1996).
  22. A. During, M. Commandre, C. Fossati, B. Bertussi, J. Y. Natoli, J. L. Rullier, H. Bercegol, and P. Bouchut, 'Integrated photothermal microscope and laser damage test facility for in-situ investigation of nanodefect induced damage,' Opt. Express 11, 2497-2501 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited