OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Stress-mapping sensors for high-power adaptive micro-optics

Mohd Suffian B. Zamali and Joseph J. Talghader  »View Author Affiliations

Applied Optics, Vol. 45, Issue 7, pp. 1619-1626 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (1379 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Continuous deformable membrane mirrors are becoming more attractive for use in adaptive optics because they cause no diffraction in the reflected beam and ensure smooth and continuous phase variations across the mirrors. However, when such mirrors are used to correct a high-power incident wave front, the absorption in the coatings causes the temperature of the membrane to increase, thereby creating in-plane thermal stress due to the rigidly clamped boundaries. We present a technique to measure thermal stress in such nondeforming membrane structures. The directional stress and temperature effects are simultaneously measured and decoupled in micromachined membrane mirrors by using a group of three ion-implanted silicon resistors with different orientations. In stress measurements made with incident power, the sensors measure changes in compressive thermal stress to within 80 90 kPa .

© 2006 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(130.6010) Integrated optics : Sensors

ToC Category:
Optical Interference Coatings

Original Manuscript: April 29, 2005
Manuscript Accepted: August 13, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Mohd Suffian B. Zamali and Joseph J. Talghader, "Stress-mapping sensors for high-power adaptive micro-optics," Appl. Opt. 45, 1619-1626 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Vdovin and P. M. Sarro, 'Flexible mirror micromachined in silicon,' Appl. Opt. 34, 2968-2972 (1995). [CrossRef] [PubMed]
  2. S. Sinha, J. Mansell, and R. Byer, 'Deformable mirrors for high-power lasers,' in High-Resolution Wavefront Control: Methods, Devices, and Applications III, J. D. Gonglewski, M. A. Vorontsov, and M. T. Gruneisen, eds., Proc. SPIE 4493, 55-63 (2002). [CrossRef]
  3. E. Chason and B. W. Sheldon, 'Monitoring stress in thin films during processing,' Surf. Eng. 19, 387-391 (2003). [CrossRef]
  4. C. Kylner and L. Mattsson, 'An optical instrument for overall stress and local stress relaxation analysis in thin metal films,' Rev. Sci. Instrum. 68, 143-149 (1997). [CrossRef]
  5. A. Bing, T. J. Zhang, C. Yuan, and K. Cui, 'Apparatus for real-time measurement of stress in thin films at elevated temperatures,' Chin. Phys. Lett. 20, 1387-1389 (2003). [CrossRef]
  6. C. L. Tien, C. C. Lee, and C. C. Jaeng, 'The measurement of thin film stress using phase shifting interferometry,' J. Mod. Opt. 47, 839-849 (2000). [CrossRef]
  7. M. A. Maden and R. J. Farris, 'Stress analysis of thin polyimide films using holographic interferometry,' Exp. Mech. 31, 178-184 (1991). [CrossRef]
  8. B. L. French and J. C. Bilello, 'In-situ observation of real-time stress-evolution and delamination of thin Ta films on Si(100),' Thin Solid Films 446, 91-98 (2004). [CrossRef]
  9. T. Bourouina, C. Vague, and H. Mekki, 'Variational method for tensile stress evaluation and application to heavily doped square-shaped silicon diaphragms,' Sens. Actuators A 49, 21-27 (1995). [CrossRef]
  10. B. J. Lwo and S. Y. Wu, 'Calibrate piezoresistive stress sensors through the assembled structure,' J. Electron. Packag. 125, 289-293 (2003). [CrossRef]
  11. L. Cao, T. S. Kim, S. C. Mantell, and D. Polla, 'Simulation and fabrication of piezoresistive membrane type MEMS strain sensors,' Sens. Actuators 80, 273-279 (2000). [CrossRef]
  12. A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, Z. Li, N. I. Maluf, and T. W. Kenny, 'A high-performance planar piezoresistive accelerometer,' J. Microelectromech. Syst. 9, 58-66 (2000). [CrossRef]
  13. P. Matei and I. Pavelescu, 'Uniaxial silicon piezoresistive accelerometer,' in Proceedings of International Semiconductor Conference (Institute of Electrical and Electronics Engineers, 2000), pp. 479-482.
  14. L. Lin, H. C. Chu, and Y. W. Lu, 'A simulation program for the sensitivity and linearity piezoresistive pressure sensors,' J. Microelectromech. Syst. 8, 514-522 (1999). [CrossRef]
  15. Y. Matsuoka, Y. Yamamoto, K. Yamada, S. Shimada, M. Tanabe, A. Yasukawa, and H. Matsuzaka, 'Characteristic analysis of a pressure sensor using the silicon piezoresistance effect for high-pressure measurements,' J. Micromech. Microeng. 5, 25-31 (1995). [CrossRef]
  16. M. J. Madou, Fundamentals of Fabrication: the Science of Miniaturization (CRC, 2002).
  17. Y. Kanda, 'Piezoresistance effect of silicon,' Sens. Actuators A 28, 83-91 (1991). [CrossRef]
  18. S. A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford U. Press, 2001).
  19. Z. Gniazdowski and P. Kowalski, 'Practical approach to extraction of piezoresistance coefficient,' Sens. Actuators A 68, 329-332 (1998). [CrossRef]
  20. M. Kasper, Mikrosystementwurf (Springer-Verlag, 2000). [CrossRef]
  21. S. Chowdhury, M. Ahmadi, and W. C. Miller, 'Nonlinear effects in MEMS capacitive microphone design,' in Proceedings of the International Conference on MEMS, NANO and Smart Systems (IEEE Computer Society, 2003), pp. 297-302.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited