OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 1, Iss. 4 — Apr. 12, 2006

Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method

Benjamin T. Cox, Simon R. Arridge, Kornel P. Köstli, and Paul C. Beard  »View Author Affiliations


Applied Optics, Vol. 45, Issue 8, pp. 1866-1875 (2006)
http://dx.doi.org/10.1364/AO.45.001866


View Full Text Article

Enhanced HTML    Acrobat PDF (2297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoacoustic imaging is a noninvasive biomedical imaging modality for visualizing the internal structure and function of soft tissues. Conventionally, an image proportional to the absorbed optical energy is reconstructed from measurements of light-induced acoustic emissions. We describe a simple iterative algorithm to recover the distribution of optical absorption coefficients from the image of the absorbed optical energy. The algorithm, which incorporates a diffusion-based finite-element model of light transport, converges quickly onto an accurate estimate of the distribution of absolute absorption coefficients. Two-dimensional examples with physiologically realistic optical properties are shown. The ability to recover optical properties (which directly reflect tissue physiology) could enhance photoacoustic imaging techniques, particularly methods based on spectroscopic analysis of chromophores.

© 2006 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: June 28, 2005
Manuscript Accepted: August 15, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Benjamin T. Cox, Simon R. Arridge, Kornel P. Köstli, and Paul C. Beard, "Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method," Appl. Opt. 45, 1866-1875 (2006)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-45-8-1866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. P. Köstli, M. Frenz, H. Bebie, and H. P. Weber, "Temporal backward projection of optoacoustic pressure transients using Fourier transform methods," Phys. Med. Biol. 46, 1863-1872 (2001). [CrossRef]
  2. M. H. Xu, Y. Xu, and L. H. V. Wang, "Time-domain reconstruction-algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Eng. 50, 1086-1099 (2003). [CrossRef]
  3. K. Köstli and P. Beard, "Two-dimensional photoacoustic imaging by use of Fourier-transform image: reconstruction and a detector with an anisotropic response," Appl. Opt. 42, 1899-1908 (2003).
  4. J. Laufer, C. Elwell, D. Delpy, and P. Beard, "Pulsed near-infrared photoacoustic spectroscopy of blood," Proc. SPIE 5320, 57-68 (2004). [CrossRef]
  5. J. G. Laufer, C. Elwell, D. Delpy, and P. Beard, "In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution," Phys. Med. Biol. 50, 4409-4428 (2005). [CrossRef]
  6. J. Laufer, C. Elwell, D. Delpy, and P. Beard, "Spatially resolved blood oxygenation measurements using time-resolved photoacoustic spectroscopy," in Oxygen Transport to Tissue XXVII, Vol. 578 of Advances in Experimental Medicine and Biology , G. Cicco, D. F. Bruley, M. Ferrari, and D. K. Harrison, eds. (Springer, 2006).
  7. R. Kruger, W. Kiser, D. Reinecke, G. Kruger, and K. Miller, "Thermoacoustic optical molecular imaging of small animals," Mol. Imaging 2, 113-123 (2003). [CrossRef]
  8. A. A. Karabutov, N. B. Podymova, and V. S. Letokhov, "Time-resolved laser optoacoustic tomography of inhomogeneous media," Appl. Phys. B 63, 545-563 (1996).
  9. G. Paltauf and H. Schmidt-Kloiber, "Pulsed optoacoustic characterization of layered media," J. Appl. Phys. 88, 1624-1631 (2000). [CrossRef]
  10. M. Jaeger, J. Niederhauser, M. Hejazi, and M. Frenz, "Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene flouride pressure transducer operated in backward and forward mode," J. Biomed. Opt. 10, 024035 (2005). [CrossRef]
  11. J. Ripoll and V. Ntziachristos, "Quantitative point source photoacoustic inversion formulas for scattering and absorbing media," Phys. Rev. E 71, 031912 (2005).
  12. G. J. Diebold and T. Sun, "Properties of photoacoustic waves in one, two, and three dimensions," Acustica 80, 339-351 (1994).
  13. B. T. Cox and P. C. Beard, "Fast calculation of pulsed photoacoustic fields in fluids using k-space methods," J. Acoust. Soc. Am. 117, 3616-3627 (2005). [CrossRef]
  14. G. Paltauf and P. E. Dyer, "Photomechanical processes and effects in ablation," Chem. Rev. 103, 487-518 (2003). [CrossRef]
  15. Y. V. Zhulina, "Optimal statistical approach to optoacoustic image reconstruction," Appl. Opt. 39, 5971-5977 (2000).
  16. J. Zhang, M. A. Anastasio, X. Pan, and L. V. Wang, "Weighted expectation maximization reconstruction algorithms for thermoacoustic tomography," IEEE Trans. Med. Imaging 24, 817-820 (2005). [CrossRef]
  17. S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissues," in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Gemert, eds. (Plenum, 1995).
  18. S. Arridge, M. Schweiger, M. Hiraoka, and D. Delpy, "A finite element approach for modelling photon transport in tissue," Med. Phys. 20, 299-309 (1993). [CrossRef]
  19. M. Schweiger, S. Arridge, M. Hiraoka, and D. Delpy, "The finite element method for the propagation of light in scattering media: boundary and source conditions," Med. Phys. 22, 1779-1792 (1995). [CrossRef]
  20. W. M. Star, "Diffusion theory of light transport," in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Gemert, eds. (Plenum, 1995).
  21. S. R. Arridge and W. R. B. Lionheart, "Nonuniqueness in diffusion-based optical tomography," Opt. Lett. 23, 882-884 (1998).
  22. M. O'Leary, D. Boas, B. Chance, and A. Yodh, "Experimental images of heterogeneous turbid media by frequency-domain diffusing-photon tomography," Opt. Lett. 20, 426-428 (1995).
  23. B. T. Cox, S. Arridge, K. Köstli, and P. Beard, "Quantitative photoacoustic imaging: fitting a model of light transport to the initial pressure distribution," Proc. SPIE 5697, 49-55 (2005). [CrossRef]
  24. R. Aster, B. Borchers, and C. Thurber, Parameter Estimation and Inverse Problems (Elsevier, 2005).
  25. C. G. A. Hoelen, F. F. M. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998).
  26. R. A. Kruger, K. D. Miller, H. E. Reynolds, W. L. Kiser, D. R. Reinecke, and G. A. Kruger, "Contrast enhancement of breast cancer in vivo using thermoacoustic ct at 434 MHz—feasibility study," Radiology 216, 279-283 (2000).
  27. R. I. Siphanto, R. G. M. Kolkman, A. Huisjes, M. C. Pilatou, F. F. M. de Mul, W. Steenbergen, and L. N. A. van Adrichem, "Imaging of small vessels using photoacoustics: an in vivo study," Lasers Surg. Med. 35, 354-362 (2004). [CrossRef]
  28. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nat. Biotechnol. 21, 803-806 (2003). [CrossRef]
  29. X. Wang, Y. Pang, G. Ku, G. Stoica, and L. V. Wang, "Three-dimensional laser-induced photoacoustic tomography of mouse brain with the skin and skull intact," Opt. Lett. 28, 1739-1741 (2003).
  30. H. Jiang, K. Paulsen, and U. Oesterberg, "Optical image reconstruction using dc data simulations and experiments," Phys. Med. Biol. 41, 1483-1498 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited