OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy

Terence S. Leung, Ilias Tachtsidis, Martin Tisdall, Martin Smith, David T. Delpy, and Clare E. Elwell  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1604-1614 (2007)
http://dx.doi.org/10.1364/AO.46.001604


View Full Text Article

Enhanced HTML    Acrobat PDF (1010 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To investigate the accuracy of measuring cerebral blood flow (CBF) using a bolus injection of Indocyanine Green (ICG) detected by near-infrared spectroscopy in adult human heads, simulations were performed using a two-layered model representing the extracerebral and intracerebral layers. Modeled optical data were converted into tissue ICG concentration using either the one-detector modified Beer–Lambert law (MBLL) method, or the two-detector partial path-length (PPL) method. The CBFs were estimated using deconvolution and blood flow index techniques. Using the MBLL method, the CBFs were significantly underestimated but the PPL method improved their accuracy and robustness, especially when used as relative measures. The dispersion of the arterial input function also affected the CBF estimates.

© 2007 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Diffuse optical imaging

History
Original Manuscript: June 5, 2006
Revised Manuscript: October 6, 2006
Manuscript Accepted: October 10, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Terence S. Leung, Ilias Tachtsidis, Martin Tisdall, Martin Smith, David T. Delpy, and Clare E. Elwell, "Theoretical investigation of measuring cerebral blood flow in the adult human head using bolus Indocyanine Green injection and near-infrared spectroscopy," Appl. Opt. 46, 1604-1614 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1604


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, "Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation," Opt. Lett. 29, 1766-1768 (2004). [CrossRef] [PubMed]
  2. C. E. Elwell, M. Cope, A. D. Edwards, J. S. Wyatt, D. T. Delpy, and E. O. R. Reynolds, "Quantification of adult cerebral hemodynamics by near-infrared spectroscopy," J. Appl. Physiol. 77, 2753-2760 (1994). [PubMed]
  3. J. Patel, K. Marks, I. Roberts, D. Azzopardi, and A. D. Edwards, "Measurement of cerebral blood flow in newborn infants using near-infrared spectroscopy with indocyanine green," Pediatr. Res. 43, 34-39 (1998). [CrossRef] [PubMed]
  4. R. Springett, Y. Sakata, and D. T. Delpy, "Precise measurement of cerebral blood flow in newborn piglets from the bolus passage of indocyanine green," Phys. Med. Biol. 46, 2209-2225 (2001). [CrossRef] [PubMed]
  5. C. R. J. C. Newton, D. A. Wilson, E. Gunnoe, B. Wagner, M. Cope, and R. J. Traystman, "Measurement of cerebral blood flow in dogs with near-infrared spectroscopy in the reflectance mode is invalid," J. Cereb. Blood Flow Metab. 17, 695703 (1997). [PubMed]
  6. W. M. Kuebler, A. Sckell, O. Habler, M. Kleen, G. E. H. Kuhnle, M. Welte, K. Messmer, and A. E. Goetz, "Noninvasive measurement of regional cerebral blood flow by near-infrared spectroscopy and indocyanine green," J. Cereb. Blood Flow Metab. 18, 445-456 (1998). [CrossRef] [PubMed]
  7. F. Gora, S. Shinde, C. E. Elwell, J. C. Goldstone, M. Cope, D. T. Delpy, and M. Smith, "Measurement of cerebral blood flow in adults using near-infrared spectroscopy and indocyanine green," J. Neurosurg. Anesthesiol. 14, 218-222 (2002). [CrossRef] [PubMed]
  8. B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, "Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow," Intensive Care Med. 29, 196-200 (2003). [PubMed]
  9. I. Tachtsidis, T. S. Leung, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, "Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide provocation in humans," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), ME67.
  10. K. Zierler, "Equations for measuring blood flow by external monitoring of radioisotopes," Circ. Res. 16, 309-321 (1965). [PubMed]
  11. G. T. Gobbel and J. R. Fike, "A deconvolution method for evaluating indicator-dilution curves," Phys. Med. Biol. 39, 1833-1854 (1994). [CrossRef] [PubMed]
  12. D. W. Brown, P. Picot, J. Gharavi, R. Springett, D. T. Delpy, R. Menon, V. Han, and T. Y. Lee, "Quantitative NIRS measurement of cerebral hemodynamics in newborn piglets," Pediatr. Res. 51, 564-570 (2002). [CrossRef] [PubMed]
  13. E. Keller, A. Nadler, H. Alkadhi, S. S. Kollias, Y. Yonekawa, and P. Niederer, "Noninvasive measurement of regional cerebral blood flow and regional cerebral blood volume by near-infrared spectroscopy and indocyanine green dye dilution," Neuroimage 20, 828-839 (2003). [CrossRef] [PubMed]
  14. R. D. Rothoerl, K. M. Schebesch, R. Faltermeier, C. Woertgen, and A. Brawanski, "Lack of correlation between Xenon133 and near-infrared spectroscopy/indocyanine green rCBF measurements," Neurol. Res. 25, 528-532 (2003). [CrossRef] [PubMed]
  15. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, "Noninvasive determination of the optical properties of two-layered turbid media," Appl. Opt. 37, 779-791 (1998). [CrossRef]
  16. P. Meier and K. L. Zierler, "On the theory of the indicator-dilution method for measurement of blood flow and volume," J. Appl. Physiol. 6, 731-743 (1954). [PubMed]
  17. L. Friberg, J. Kastrup, M. Hansen, and J. Bulow, "Cerebral effects of scalp cooling and extracerebral contribution to calculated blood flow values using the intravenous 133Xe technique," Scand. J. Clin. Lab. Invest. 46, 375-379 (1986). [CrossRef] [PubMed]
  18. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1999). [CrossRef] [PubMed]
  19. J. S. Wyatt, M. Cope, D. T. Delpy, C. E. Richardson, A. D. Edwards, S. Wray, and E. O. Reynolds, "Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy," J. Appl. Physiol. 68, 1086-1091 (1990). [PubMed]
  20. F. Calamante, D. G. Gadian, and A. Connelly, "Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition," Magn. Reson. Med. 22, 466-473 (2000). [CrossRef]
  21. R. W. Stow and P. S. Hetzel, "An empirical formula for indicator-dilution curves as obtained in human beings," J. Appl. Physiol. 7, 161-167 (1954). [PubMed]
  22. K. Murase, M. Shinohara, and Y. Yamazaki, "Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging," Phys. Med. Biol. 46, 3146-3159 (2001). [CrossRef]
  23. M. Kohl-Bareis, H. Obrig, J. Steinbrink, J. Malak, K. Uludag, and A. Villringer, "Noninvasive monitoring of cerebral blood flow by a dye bolus method: separation of brain from skin and skull signals," J. Biomed. Opt. 7, 464-470 (2002). [CrossRef] [PubMed]
  24. P. Mansfield, "Imaging by nuclear magnetic resonance," J. Phys. E 21, 18-30 (1988). [CrossRef]
  25. E. Okada and D. T. Delpy, "Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer," Appl. Opt. 42, 2906-2914 (2003). [CrossRef] [PubMed]
  26. M. Essenpreis, C. E. Elwell, P. van der Zee, S. R. Arridge, and D. T. Delpy, "Spectral dependence of temporal point spread functions in human tissues," Appl. Opt. 32, 418-425 (1993). [CrossRef] [PubMed]
  27. D. M. Hueber, M. A. Franceschini, H. Y. Ma, Q. Zhang, J. R. Ballesteros, S. Fantini, D. Wallace, V. Ntziachristos, and B. Chance, "Noninvasive and quantitative near-infrared haemoglobin spectrometry in the piglet brain during hypoxic stress, using a frequency-domain multidistance instrument," Phys. Med. Biol. 46, 41-62 (2001). [CrossRef] [PubMed]
  28. Y. Hoshi, M. Shimada, C. Sato, and Y. Iguchi, "Reevaluation of near-infrared light propagation in the adult human head: implications for functional near-infrared spectroscopy," J. Biomed. Opt. 10, 064032 (2005). [CrossRef]
  29. S. J. Matcher and C. E. Cooper, "Absolute quantification of deoxyhaemoglobin concentration in tissue near-infrared spectroscopy," Phys. Med. Biol. 39, 1295-1312 (1994). [CrossRef] [PubMed]
  30. P. van der Zee, M. Essenpreis, and D. T. Delpy, "Optical properties of brain," Proc. SPIE 1888, 454-465 (1993). [CrossRef]
  31. S. J. Matcher, M. Cope, and D. T. Delpy, "In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy," Appl. Opt. 36, 386-396 (1997). [CrossRef] [PubMed]
  32. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, P. Fallon, L. Tyszczuk, M. Cope, and D. T. Delpy, "Measurement of cranial optical-path length as a function of age using phase-resolved near-infrared spectroscopy," Pediatr. Res. 39, 889-894 (1996). [CrossRef] [PubMed]
  33. M. Hiraoka, F. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical path length in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993). [CrossRef] [PubMed]
  34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge U. Press, 1992).
  35. L. Ostergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen, "High-resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis," Magn. Reson. Med. 36, 715-725 (1996). [CrossRef] [PubMed]
  36. E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, "Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyanine green dye dilution and near-infrared spectroscopy," J. Neurosurg. Anesthesiol. 13, 43-48 (2001). [CrossRef] [PubMed]
  37. A. Liebert, H. Wabnitz, J. Steinbrink, M. Moller, R. Macdonald, H. Rinneberg, A. Villringer, and H. Obrig, "Bedside assessment of cerebral perfusion in stroke patients based on optical monitoring of a dye bolus by time-resolved diffuse reflectance," Neuroimage 24, 426-435 (2005). [CrossRef] [PubMed]
  38. L. Ostergaard, D. A. Chesler, R. M. Weisskoff, A. G. Sorensen, and B. R. Rosen, "Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data," J. Cereb. Blood Flow Metab. 19, 690-699 (1999). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited