OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth

Dax S. Kepshire, Scott C. Davis, Hamid Dehghani, Keith D. Paulsen, and Brian W. Pogue  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1669-1678 (2007)
http://dx.doi.org/10.1364/AO.46.001669


View Full Text Article

Enhanced HTML    Acrobat PDF (1999 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Subsurface tomography with diffuse light has been investigated with a noncontact approach to characterize the performance of absorption and fluorescence imaging. Using both simulations and experiments, the reconstruction of local subsurface heterogeneity is demonstrated, but the recovery of target size and fluorophore concentration is not linear when changes in depth occur, whereas the mean position of the object for experimental fluorescent and absorber targets is accurate to within 0.5 and 1.45   mm when located within the first 10   mm below the surface. Improvements in the linearity of the response with depth appear to remain challenging and may ultimately limit the approach to detection rather than characterization applications. However, increases in tissue curvature and∕or the addition of prior information are expected to improve the linearity of the response. The potential for this type of imaging technique to serve as a surgical guide is highlighted.

© 2007 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.5270) Medical optics and biotechnology : Photon density waves
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Diffuse optical imaging

History
Original Manuscript: July 3, 2006
Manuscript Accepted: September 5, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Dax S. Kepshire, Scott C. Davis, Hamid Dehghani, Keith D. Paulsen, and Brian W. Pogue, "Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth," Appl. Opt. 46, 1669-1678 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1669


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. W. Pogue, T. McBride, U. Osterberg, and K. Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4, 270-286 (1999). [CrossRef] [PubMed]
  2. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, "Imaging of spontaneous canine mammary tumors using fluorescent contrast agents," Photochem. Photobiol. 70, 87-94 (1999). [CrossRef] [PubMed]
  3. H. Xu, H. Dehghani, B. W. Pogue, R. F. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003). [CrossRef] [PubMed]
  4. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, "Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia," J. Cereb. Blood Flow Metab. 23, 911-924 (2003). [CrossRef] [PubMed]
  5. Q. Zhu, S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, M. Huang, N. G. Chen, B. Jagjivan, and K. Zarfos, "Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers," Neoplasia 7, 263-270 (2005). [CrossRef] [PubMed]
  6. M. Franceschini and D. A. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004). [CrossRef] [PubMed]
  7. J. C. Hebden, A. Gibson, R. M. Yusof, N. Everdell, E. M. Hillman, D. T. Delpy, S. R. Arridge, T. Austin, J. H. Meek, and J. S. Wyatt, "Three-dimensional optical tomography of the premature infant brain," Phys. Med. Biol. 47, 4155-4166 (2002). [CrossRef] [PubMed]
  8. W. P. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H.-J. Reulen, "Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial," Lancet Oncol. 7, 392-401 (2006). [CrossRef] [PubMed]
  9. V. Ntziachristos, A. G. Yodh, M. Schnall, and B. Chance, "Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement," Proc. Natl. Acad. Sci. U.S.A. 97, 2767-2772 (2000). [CrossRef] [PubMed]
  10. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  11. V. Ntziachristos, A. G. Yodh, M. D. Schnall, and B. Chance, "MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions," Neoplasia 4, 347-354 (2002). [CrossRef] [PubMed]
  12. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, "Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005). [CrossRef] [PubMed]
  13. J. C. Hebden, A. Gibson, T. Austin, R. M. Yusof, N. Everdell, D. T. Delpy, S. R. Arridge, J. H. Meek, and J. S. Wyatt, "Imaging changes in blood volume and oxygenation in the newborn infant brain using three-dimensional optical tomography," Phys. Med. Biol. 49, 1117-1130 (2004). [CrossRef] [PubMed]
  14. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. Orel, M. Schall, and B. J. Czerniecki, "Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-933 (2005). [CrossRef] [PubMed]
  15. D. B. Jakubowski, A. E. Cerussi, F. Bevilacqua, N. Shah, D. Hsiang, J. Butler, and B. J. Tromberg, "Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study," J. Biomed. Opt. 9, 230-238 (2004). [CrossRef] [PubMed]
  16. E. M. Sevick-Muraca, J. P. Houston, and M. Gurfinkel, "Fluorescence-enhanced, near-infrared diagnostic imaging with contrast agents," Curr. Opin. Chem. Biol. 6, 642-656 (2002). [CrossRef] [PubMed]
  17. V. Ntziachristos, C. Bremer, and R. Weissleder, "Fluorescence imaging with near infrared light: new technological advances that enable in vivo molecular imaging," Eur. J. Radiol. 13, 195-208 (2003).
  18. R. Weissleder, "Scaling down imaging: molecular mapping of cancer in mice," Nat. Rev. Cancer 2, 11-18 (2002). [CrossRef] [PubMed]
  19. R. Weissleder, C. H. Tung, U. Mahmood, and A. Bogdanov, Jr., "In vivo imaging of tumors with protease-activated near-infrared fluorescent probes," Nat. Biotechnol. 17, 375-378 (1999). [CrossRef] [PubMed]
  20. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8, 757-760 (2002). [CrossRef] [PubMed]
  21. B. W. Pogue, S. L. Gibbs, and B. Chen, "Fluorescence imaging in vivo: raster scanned point-source imaging provides more accurate quantification than broad beam geometries," Technol. Cancer Res. Treat. 3, 15-21 (2004). [PubMed]
  22. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  23. S. V. Patwardhan, S. R. Bloch, S. Achilefu, and J. P. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2576 (2005). [CrossRef] [PubMed]
  24. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  25. A. Godavarty, A. B. Thompson, R. Roy, M. Gurfinkel, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Diagnostic imaging of breast cancer using fluorescence-enhanced optical tomography: phantom studies," J. Biomed. Opt. 9, 488-496 (2004). [CrossRef] [PubMed]
  26. A. Godavarty, M. J. Eppstein, C. Zhang, and E. M. Sevick-Muraca, "Detection of single and multiple targets in tissue phantoms with fluorescence-enhanced optical imaging: feasibility study," Radiology 235, 148-154 (2005). [CrossRef] [PubMed]
  27. D. Kepshire, S. Gibbs, S. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Subsurface fluorescence imaging of Protoporphyrin IX with B-Scan mode tomography," Proc. SPIE. 6139, 61391F (2006).
  28. R. B. S. Jorge Ripoll and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 1-4 (2003). [CrossRef]
  29. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, and K. D. Paulsen, "Development and calibration of a parallel modulated near-infrared tomography system for hemoglobin imaging in vivo," Rev. Sci. Instrum. 72, 1817-1824 (2001). [CrossRef]
  30. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, and M. S. Patterson, "Optical image reconstruction using frequency-domain data: simulations and experiments," J. Opt. Soc. Am. A 13, 253-266 (1996). [CrossRef]
  31. A. H. Hielscher, A. Y. Bluestone, G. S. Abdoulaev, A. D. Klose, J. Lasker, M. Stewart, U. Netz, and J. Beuthan, "Near-infrared diffuse optical tomography," Dis. Markers 18, 313-337 (2002).
  32. S. R. Arridge and M. Schweiger, "Image reconstruction in optical tomography," Philos. Trans. R. Soc. London Ser. B. 352, 717-726 (1997). [CrossRef]
  33. S. R. Arridge and J. C. Hebden, "Optical imaging in medicine: II. Modelling and reconstruction," Phys. Med. Biol. 42, 841-853 (1997). [CrossRef] [PubMed]
  34. J. Chang, H. L. Graber, and R. L. Barbour, "Luminescence optical tomography of dense scattering media," J. Opt. Soc. Am. A 14, 288-299 (1997). [CrossRef]
  35. D. Y. Paithankar, A. U. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light re-emitted from tissues and other random media," Appl. Opt. 36, 2260-2272 (1997). [CrossRef] [PubMed]
  36. H. Jiang, "Frequency-domain fluorescence diffusion tomography: a finite-element-based algorithm and simulations," Appl. Opt. 37, 5337-5343 (1998). [CrossRef]
  37. A. B. Millstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3093 (2003). [CrossRef]
  38. R. Roy and E. M. Sevick-Muraca, "Three-dimensional unconstrained and constrained image-reconstruction techniques applied to fluorescence, frequency-domain photon migration," Appl. Opt. 40, 2206-2215 (2001). [CrossRef]
  39. S. C. Davis, B. W. Pogue, H. Dehghani, and K. D. Paulsen, "Contrast-detail analysis characterizing diffuse optical fluorescence tomography image reconstruction," J. Biomed. Opt. 10, 1-3 (2005). [CrossRef]
  40. K. D. Paulsen and H. Jiang, "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). [CrossRef] [PubMed]
  41. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  42. S. R. Arridge and M. Schweiger, "Photon-measurement density functions. Part 2: Finite-element-method calculations," Appl. Opt. 34, 8026-8037 (1995). [CrossRef] [PubMed]
  43. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999). [CrossRef]
  44. H. Dehghani, B. W. Pogue, S. Jiang, B. A. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003). [CrossRef] [PubMed]
  45. K. D. Paulsen, P. M. Meaney, M. J. Moskowitz, and J. M. Sullivan, Jr., "A dual mesh scheme for finite element based reconstruction algorithms," IEEE Trans. Med. Imaging 14, 504-514 (1995). [CrossRef] [PubMed]
  46. W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000). [CrossRef] [PubMed]
  47. A. Bogaards, A. Varma, S. P. Collens, A. Lin, A. Giles, V. Yang, J. M. Bilbao, L. D. Lilge, P. J. Muller, and B. C. Wilson, "Increased brain tumor resection using fluorescence image guidance in a preclinical model," Lasers Surg. Med. 35, 181-190 (2004). [CrossRef] [PubMed]
  48. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: A singular-value analysis," Opt. Lett. 26, 701-703 (2001). [CrossRef]
  49. Q. Zhu, N. Chen, and S. H. Kurtzman, "Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound," Opt. Lett. 28, 337-339 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited