OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

High-resolution frequency-domain second-harmonic optical coherence tomography

Jianping Su, Ivan V. Tomov, Yi Jiang, and Zhongping Chen  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1770-1775 (2007)
http://dx.doi.org/10.1364/AO.46.001770


View Full Text Article

Enhanced HTML    Acrobat PDF (1053 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We used continuum generated in an 8.5  cm long fiber by a femtosecond Yb fiber laser to improve threefold the axial resolution of frequency domain second-harmonic optical coherence tomography (SH-OCT) to 12 μ m . The acquisition time was shortened by more than 2 orders of magnitude compared to the time-domain SH-OCT. The system was applied to image biological tissue of fish scales, pig leg tendon, and rabbit eye sclera. Highly organized collagen fibrils can be visualized in the recorded images. Polarization dependence on the SH has been used to obtain polarization resolved images.

© 2007 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(190.4160) Nonlinear optics : Multiharmonic generation

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: June 23, 2006
Manuscript Accepted: September 15, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Jianping Su, Ivan V. Tomov, Yi Jiang, and Zhongping Chen, "High-resolution frequency-domain second-harmonic optical coherence tomography," Appl. Opt. 46, 1770-1775 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "Second-harmonic optical coherence tomography," Opt. Lett. 29, 1090-1092 (2004). [CrossRef] [PubMed]
  2. Y. Jiang, I. Tomov, Y. Wang, and Z. Chen, "High-resolution second-harmonic optical coherence tomography of collagen in rat-tail tendon," Appl. Phys. Lett. 86, 133901-3 (2005). [CrossRef]
  3. B. E. Applegate, C. Yang, A. M. Rollins, and J. A. Izatt, "Polarization-resolved second-harmonic-generation optical coherence tomography in collagen," Opt. Lett. 29, 2252-2254 (2004). [CrossRef] [PubMed]
  4. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Spectral domain second-harmonic optical coherence tomography," Opt. Lett. 30, 2391-2393 (2005). [CrossRef] [PubMed]
  5. C. Vinegoni, J. S. Bredfeldt, D. L. Marks, and S. A. Boppart, "Nonlinear optical contrast enhancement for optical coherence tomography," Opt. Express 12, 331-341 (2004). [CrossRef] [PubMed]
  6. J. Su, I. V. Tomov, Y. Jiang, and Z. Chen, "Frequency domain second harmonic optical coherence tomography," Proc. SPIE 6079, 607901-6 (2006).
  7. I. Freund and M. Deutsch, "Second-harmonic microscopy of biological tissue," Opt. Lett. 11, 94-96 (1986). [CrossRef] [PubMed]
  8. B. M. Kim, J. Eichler, K. M. Reiser, A. M. Rubenchik, and L. B. Da Silva, "Collagen structure and nonlinear susceptibility: effects of heat, glycation and enzymatic cleavage on second harmonic signal intensity," Laser Surg. Med. 27, 329-335 (2000). [CrossRef]
  9. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nature Biotechnol. 21, 1369-1377 (2003). [CrossRef]
  10. S. Yazdanfar, L. H. Laiho, and P. T. C. So, "Interferometric second harmonic generation microscopy," Opt. Express 12, 2739-2745 (2004). [CrossRef] [PubMed]
  11. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, "Three-dimensional high-resolution second harmonic generation imaging of endogenous structural proteins in biological tissues," Biophys. J. 81, 493-508 (2002). [CrossRef]
  12. R. M. Williams, W. R. Zipfel, and W. W. Webb, "Interpreting second harmonic generation images of collagen I fibrils," Biophys. J. 88, 1377-1386 (2005). [CrossRef]
  13. J. Mertz and L. Moreausx, "Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers," Opt. Commun. 196, 325-330 (2001). [CrossRef]
  14. L. Moreaux, O. Sandre, and L. Mertz, "Membrane imaging by second-harmonic generation microscopy," J. Opt. Soc. Am. B 17, 1685-1694 (2000). [CrossRef]
  15. H. Lim, Y. Jiang, Y. Wang, Y. C. Huang, Z. Chen, and F. W. Wise, "Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm," Opt. Lett. 30, 1171-1173 (2005). [CrossRef] [PubMed]
  16. A. A. Oraevsky, L. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801-809 (1996). [CrossRef]
  17. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984).
  18. R. Leitgeb, C. K. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  19. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, "Quantitative second harmonic generation microscopy in collagen," Appl. Opt. 42, 5209-5219 (2003). [CrossRef] [PubMed]
  20. P. J. Campagnola, H. A. Clark, W. A. Mohler, A. Lewis, and L. M. Loew, "Second harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms," Nature Biotechnol. 21, 1356-1360 (2003). [CrossRef]
  21. M. Han, G. Giese, and J. F. Bille, "Second harmonic generation imaging of collagen fibrils in cornea and sclera," Opt. Express 13, 5791-5797 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited