OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography

Hui Wang and Andrew M. Rollins  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1787-1794 (2007)
http://dx.doi.org/10.1364/AO.46.001787


View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a dual-band continuum light source centered at 830 and 1300 nm for optical coherence tomography (OCT) generated by pumping a photonic crystal fiber having two closely spaced zero-dispersion wavelengths with a femtosecond laser at 1059 nm . By use of polarization control, sidelobe suppression can be improved up to approximately 7.7 dB. By employing compression of the pump pulses, the generated spectrum is smooth and near-Gaussian, resulting in a point-spread function with negligible sidelobes. We demonstrate ultrahigh-resolution OCT imaging of biological tissue in vivo and in vitro using this light source and compare it with conventional-resolution OCT imaging at 1300 nm .

© 2007 Optical Society of America

OCIS Codes
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: July 6, 2006
Manuscript Accepted: September 15, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Hui Wang and Andrew M. Rollins, "Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography," Appl. Opt. 46, 1787-1794 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1787


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimolo, J. K. Ranka, and R. S. Windeler, "Ultrahigh-resolution optical coherence tomography using continuum generation in an air silica microstructure optical fiber," Opt. Lett. 26, 608-610 (2001). [CrossRef]
  2. D. L. Marks, A. L. Oldenburg, J. J. Reynold, and S. A. Boppart, "Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography," Opt. Lett. 27, 2010-2012 (2002). [CrossRef]
  3. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002). [CrossRef]
  4. K. Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2- m m axial resolution optical coherence tomography in the 1300 nm wavelength region," Opt. Lett. 28, 707-709 (2003). [CrossRef] [PubMed]
  5. I. Hartl, A. M. Kowalevicz, P.-L. Hsiung, T. H. Ko, T. Schibli, F. X. Kärtner, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Bünting, and D. Kopf, "Ultrahigh resolution optical coherence tomography using novel femtosecond laser sources," in Ultrafast Phenomena XIII, R. D. Miller, M. M. Murnane, N.F. Scherer, and A. M. Weiner, eds. (Springer-Verlag, 2003), pp. 660-662.
  6. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, "Noise amplification during supercontinuum generation in microstructure fiber," Opt. Lett. 28, 944-946 (2003). [CrossRef] [PubMed]
  7. S. Bourquin, A. D. Aguirre, I. Hartl, P. Hsiung, T. H. Ko, J. G. Fujimoto, T. A. Birks, W. J. Wadsworth, U. Büting, and D. Kopf, "Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:Glass laser and nonlinear fiber," Opt. Express 11, 3290-3297 (2003). [CrossRef] [PubMed]
  8. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mflμer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). [CrossRef] [PubMed]
  9. H. Wang and A. M. Rollins, "Dual band supercontinuum light source for OCT," in Biomedical Optics 2006 Technical Digest (Optical Society of America, 2006), Tui30.
  10. A. Aguirre, N. Nishizawa, J. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1145-1160 (2005). [CrossRef]
  11. A. Proulx, J.-M., Ménard, N. Hô, J. M. Laniel, R. Vallée, and C. Paré, "Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers," Opt. Express 11, 3338-3345 (2003). [CrossRef] [PubMed]
  12. Z. Zhu and T. G. Brown, "Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber," Opt. Express 12, 791-796 (2004). [CrossRef] [PubMed]
  13. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  14. S. Popov, E. Vanin, and G. Jacobsen, "Polarization dependence of gain in discrete Raman amplifiers with dispersion compensating fibres," J. Opt. A 4, 46-51 (2002). [CrossRef]
  15. I.-K. Hwang, Y.-J. Lee, and Y.-H. Lee, "Birefringence induced by irregular structure in photonic crystal fiber," Opt. Express 11, 2799-2806 (2003). [CrossRef] [PubMed]
  16. P. L. Francois, "Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain," J. Opt. Soc. Am. B 8, 276-293 (1991). [CrossRef]
  17. G. Boyer, "High-power femtosecond-pulse reshaping near the zero-dispersion wavelength of an optical fiber," Opt. Lett. 24, 945-947 (1999). [CrossRef]
  18. T. Hori, N. Nishizawa, T. Goto, and M. Yoshida, "Experimental and numerical analysis of widely broadened supercontinuum generation in highly nonlinear dispersion-shifted fiber with a femtosecond pulse," J. Opt. Soc. Am. B 21, 1969-1980 (2004). [CrossRef]
  19. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). [CrossRef] [PubMed]
  20. Y. Zaouter, J. Didierjean, F. Balembois, G. L. Leclin, F. Druon, P. Georges, J. Petit, P. Goldner, and B. Viana, "47-fs diode-pumped Yb3+:CaGdAlO4 laser," Opt. Lett. 31, 119-121 (2006). [CrossRef] [PubMed]
  21. J. R. Buckley, S. W. Clark, and F. W. Wise, "Generation of ten-cycle pulses from an ytterbium fiber laser with cubic phase-compensation," Opt. Lett. 31, 1340-1342 (2006). [CrossRef] [PubMed]
  22. P. Herz, Y. Chen, A. Aguirre, J. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, "Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography," Opt. Express 12, 3532-3542 (2004). [CrossRef] [PubMed]
  23. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, "Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited