OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Directional eye fixation sensor using birefringence-based foveal detection

Boris I. Gramatikov, Othman H. Y. Zalloum, Yi Kai Wu, David G. Hunter, and David L. Guyton  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1809-1818 (2007)
http://dx.doi.org/10.1364/AO.46.001809


View Full Text Article

Enhanced HTML    Acrobat PDF (2745 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We recently developed and reported an eye fixation monitor that detects the fovea by its radial orientation of birefringent nerve fibers. The instrument used a four-quadrant photodetector and a normalized difference function to check for a best match between the detector quadrants and the arms of the bow-tie pattern of polarization states surrounding the fovea. This function had a maximum during central fixation but could not tell where the subject was looking relative to the center. We propose a linear transformation to obtain horizontal and vertical eye position coordinates from the four photodetector signals, followed by correction based on a priori calibration information. The method was verified on both a computer model and on human eyes. The major advantage of this new eye-tracking method is that it uses true information coming from the fovea, rather than reflections from other structures, to identify the direction of foveal gaze.

© 2007 Optical Society of America

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(200.4560) Optics in computing : Optical data processing
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization
(330.2210) Vision, color, and visual optics : Vision - eye movements
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices

ToC Category:
Optical microscopy techniques and technology

History
Original Manuscript: April 28, 2006
Revised Manuscript: September 29, 2006
Manuscript Accepted: October 6, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Boris I. Gramatikov, Othman H. Y. Zalloum, Yi Kai Wu, David G. Hunter, and David L. Guyton, "Directional eye fixation sensor using birefringence-based foveal detection," Appl. Opt. 46, 1809-1818 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Collewijn, F. van der Mark, and T. C. Jansen, "Precise recording of human eye movements," Vision Res. 15, 447-450 (1975). [CrossRef] [PubMed]
  2. E. Paperno and D. Semyonov, "A new method for eye location tracking," IEEE Trans. Biomed. Eng. 50, 1174-1179 (2003). [CrossRef] [PubMed]
  3. J. Merchant, "Laboratory Oculometer," Honeywell, Radiation Center/Electronics Research Center, NASA, Lexington, Mass. (1968).
  4. K. Hartnegg and B. Fischer, "A turn-key transportable eye-tracking instrument for clinical assessment," Behav. Res. Methods Instrum. Comput. 34, 625-629 (2002). [CrossRef]
  5. T. N. Cornsweet and H. D. Crane, "Accurate two-dimensional eye tracker using first and fourth Purkinje images," J. Opt. Soc. Am. 63, 921-928 (1973). [CrossRef] [PubMed]
  6. M. Eizenman, R. C. Frecker, and P. E. Hallett, "Precise non-contacting measurement of eye movements using the corneal reflex," Vision Res. 24, 167-174 (1984). [CrossRef] [PubMed]
  7. J. P. Reulen, J. T. Marcus, D. Koops, F. R. de Vries, G. Tiesinga, K. Boshuizen, and J. E. Bos, "Precise recording of eye movement: the IRIS technique. Part 1," Med. Biol. Eng. Comput. 26, 20-26 (1988). [CrossRef] [PubMed]
  8. K. Irie, B. A. Wilson, R. D. Jones, P. J. Bones, and T. J. Anderson, "A laser-based eye-tracking system," Behav. Res. Methods Instrum. Comput. 34, 561-572 (2002). [CrossRef]
  9. A. H. Clarke, J. Ditterich, K. Druen, U. Schonfeld, and C. Steineke, "Using high frame rate CMOS sensors for three-dimensional eye tracking," Behav. Res. Methods Instrum. Comput. 34, 549-560 (2002). [CrossRef]
  10. J. S. Stahl, A. M. van Alphen, and C. I. De Zeeuw, "A comparison of video and magnetic search coil recordings of mouse eye movements," J Neurosci. Methods 99, 101-110 (2000). [CrossRef] [PubMed]
  11. F. Schaeffel, "Kappa and Hirschberg ratio measured with an automated video gaze tracker," Optom. Vision Sci. 79, 329-334 (2002). [CrossRef]
  12. A. Talukder, J.-M. Morookian, S. Monacos, R. Lam, C. LeBaw, and J. L. Lambert, "Eye-tracking architecture for biometrics and remote monitoring," Appl. Opt. 44, 693-700 (2005). [CrossRef] [PubMed]
  13. C. Mello-Thoms, C. Britton, G. Abrams, C. Hakim, R. Shah, L. Hardesty, G. Maitz, and D. Gur, "Head-mounted versus remote eye tracking of radiologists searching for breast cancer: a comparison," Acad. Radiol. 13, 203-209 (2006). [CrossRef] [PubMed]
  14. M. S. Salman, J. A. Sharpe, M. Eizenman, L. Lillakas, C. Westall, T. To, M. Dennis, and M. J. Steinbach, "Saccades in children," Vision Res. 46, 1432-1439 (2006). [CrossRef]
  15. S. Duke-Elder, N. Ashton, R. J. H. Smith, and M. Lederman, "Entoptic Observations," in The Foundations of Ophthalmology, System of Ophthalmology (C. V. Mosby, 1964), Chap. 15.
  16. H. B. Klein Brink and G. J. van Blokland, "Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry," J. Opt. Soc. Am. A 5, 49-57 (1988). [CrossRef] [PubMed]
  17. A. W. Dreher, K. Reiter, and R. N. Weinreb, "Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer," Appl. Opt. 31, 3730-3735 (1992). [CrossRef] [PubMed]
  18. D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, and D. L. Guyton, "Mathematical modeling of retinal birefringence scanning," J. Opt. Soc. Am. A 16, 2103-2111 (1999). [CrossRef]
  19. D. G. Hunter, S. N. Patel, and D. L. Guyton, "Automated detection of foveal fixation by use of retinal birefringence scanning," Appl. Opt. 38, 1273-1279 (1999). [CrossRef]
  20. D. L. Guyton, D. G. Hunter, S. N. Patel, J. C. Sandruck, and R. L. Fry, "Eye fixation monitor and tracker," U.S. Patent 6,027,216 (22 February 2000).
  21. D. G. Hunter, A. S. Shah, S. Sau, D. Nassif, and D. L. Guyton, "Automated detection of ocular alignment with binocular retinal birefringence scanning," Appl. Opt. 42, 3047-3053 (2003). [CrossRef] [PubMed]
  22. D. Nassif, B. Gramatikov, D. Guyton, and D. Hunter, "Pediatric vision screening using binocular retinal birefringence scanning," Ophthalmic Technologies XIII,Proc. SPIE 4951, 9-20 (2003). [CrossRef]
  23. D. G. Hunter, D. S. Nassif, N. V. Piskun, R. Winsor, B. I. Gramatikov, and D. L. Guyton, "Pediatric vision screener 1: instrument design and operation," J. Biomed. Opt. 9, 1363-1368 (2004). [CrossRef] [PubMed]
  24. B. I. Gramatikov, O. H. Y. Zalloum, Y. K. Wu, D. G. Hunter, and D. L. Guyton, "Birefringence-based eye fixation monitor with no moving parts," J. Biomed. Opt. 11, 034025 (2006). [CrossRef] [PubMed]
  25. D. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, 1980).
  26. W. A. Shurcliff, Polarized Light: Production and Use (Harvard U. Press, 1962).
  27. D. S. Klieger, J. W. Lewis, and C. E. Randall, Polarized Light in Optics and Spectroscopy (Academic, 1990).
  28. S. N. Patel, "Analysis of foveal birefringence to monitor eye fixation," M. S. thesis (Johns Hopkins U. Press, 1995).
  29. D. T. Sandwell, "Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data," Geophys. Res. Lett. 2, 139-142 (1987). [CrossRef]
  30. J. N. Van der Geest and M. A. Frens, "Recording eye movements with video-oculography and scleral search coils: a direct comparison of two methods," J Neurosci. Methods 114, 185-195 (2002). [CrossRef] [PubMed]
  31. R. W. Knighton and X. R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Visual. Sci. 43, 82-86 (2002).
  32. R. N. Weinreb, C. Bowd, D. S. Greenfield, and L. M. Zangwill, "Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry," Arch. Ophthalmol. (Chicago) 120, 901-906 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited