OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Quantitative phase imaging of live cells using fast Fourier phase microscopy

Niyom Lue, Wonshik Choi, Gabriel Popescu, Takahiro Ikeda, Ramachandra R. Dasari, Kamran Badizadegan, and Michael S. Feld  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1836-1842 (2007)
http://dx.doi.org/10.1364/AO.46.001836


View Full Text Article

Enhanced HTML    Acrobat PDF (1628 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using the decomposition of an image field in two spatial components that can be controllably shifted in phase with respect to each other, a new quantitative-phase microscope has been developed. The new instrument, referred to as the fast Fourier phase microscope (f-FPM), provides a factor of 100 higher acquisition rate compared with our previously reported Fourier phase microscope. The resulting quantitative-phase images are characterized by diffraction limited transverse resolution and path-length stability better than 2   nm at acquisition rates of 10 frames∕s or more. These features make the f-FPM particularly appealing for investigating the structure and dynamics of live cells over a broad range of time scales. In addition, we demonstrate the possibility of examining subcellular structures by digitally processing the amplitude and phase information provided by the instrument. Thus we developed software that can emulate phase contrast and differential interference contrast microscopy images by numerically processing FPM images. This approach adds the flexibility of digitally varying the phase shift between the two interfering beams. The images obtained appear as if they were recorded by variable phase contrast or differential interference contrast microscopes that deliver an enhanced view to the subcellular structure when compared with the typical commercial microscope.

© 2007 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(170.1530) Medical optics and biotechnology : Cell analysis
(180.3170) Microscopy : Interference microscopy

ToC Category:
Optical microscopy techniques and technology

History
Original Manuscript: June 28, 2006
Revised Manuscript: October 3, 2006
Manuscript Accepted: October 6, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Niyom Lue, Wonshik Choi, Gabriel Popescu, Takahiro Ikeda, Ramachandra R. Dasari, Kamran Badizadegan, and Michael S. Feld, "Quantitative phase imaging of live cells using fast Fourier phase microscopy," Appl. Opt. 46, 1836-1842 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1836


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Zernike, "How I discovered phase contrast," Science 121, 345-349 (1955). [CrossRef] [PubMed]
  2. F. H. Smith, "Microscopic interferometry," Research (London) 8, 385-395 (1955).
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  4. C. G. Rylander, D. P. Dave, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, "Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy," Opt. Lett. 29, 1509-1511 (2004). [CrossRef] [PubMed]
  5. T. Akkin, D. P. Dave, T. E. Milner, and H. G. Rylander, "Detection of neural activity using phase-sensitive optical low-coherence reflectometry," Opt. Express 12, 2377-2386 (2004). [CrossRef] [PubMed]
  6. C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, "Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer," Opt. Lett. 29, 2028-2030 (2004). [CrossRef] [PubMed]
  7. M. A. Choma, A. K. Ellerbee, C. H. Yang, T. L. Creazzo, and J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005). [CrossRef] [PubMed]
  8. C. H. Yang, A. Wax, R. R. Dasari, and M. S. Feld, "Phase-dispersion optical tomography," Opt. Lett. 26, 686-688 (2001). [CrossRef]
  9. C. H. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Interferometric phase-dispersion microscopy," Opt. Lett. 25, 1526-1528 (2000). [CrossRef]
  10. C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics, Opt. Lett. 26, 1271-1273 (2001). [CrossRef]
  11. G. A. Dunn and D. Zicha, eds., Using DRIMAPS System of Transmission Interference Microscopy to Study Cell Behavior (Academic, 1997).
  12. D. Zicha and G. A. Dunn, "An image-processing system for cell behavior studies in subconfluent cultures," J. Microsc. 179, 11-21 (1995). [CrossRef]
  13. D. Zicha, E. Genot, G. A. Dunn, and I. M. Kramer, "TGF beta 1 induces a cell-cycle-dependent increase in motility of epithelial cells," J. Cell Sci. 112, 447-454 (1999). [PubMed]
  14. T. E. Gureyev, A. Roberts, and K. A. Nugent, "Phase retrieval with the transport-of-intensity equation--matrix solution with use of Zernike polynomials," J. Opt. Soc. Am. A 12, 1932-1941 (1995). [CrossRef]
  15. T. E. Gureyev, A. Roberts, and K. A. Nugent, "Partially coherent fields, the transport-of-intensity equation and phase uniqueness," J. Opt. Soc. Am. A 12, 1942-1946 (1995). [CrossRef]
  16. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948). [CrossRef] [PubMed]
  17. T. Zhang and I. Yamaguchi, "Three-dimensional microscopy with phase-shifting digital holography," Opt. Lett. 23, 1221-1223 (1998). [CrossRef]
  18. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005). [CrossRef] [PubMed]
  19. B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, and P. J. Magistretti, "Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy," Opt. Express 13, 9361-9373 (2005). [CrossRef] [PubMed]
  20. F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  21. G. Popescu, L. P. Deflores, J. C. Vaughan, K. Badizadegan, H. Iwai, R. R. Dasari, and M. S. Feld, "Fourier phase microscopy for investigation of biological structures and dynamics," Opt. Lett. 29, 2503-2505 (2004). [CrossRef] [PubMed]
  22. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, "Hilbert phase microscopy for investigating fast dynamics in transparent systems," Opt. Lett. 30, 1165-1168 (2005). [CrossRef] [PubMed]
  23. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, "Diffraction phase microscopy for quantifying cell structure and dynamics," Opt. Lett. 31, 775-777 (2006). [CrossRef] [PubMed]
  24. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, "Erythrocyte structure and dynamics quantified by Hilbert phase microscopy," J. Biomed. Opt. Lett. 10, 060503 (2005). [CrossRef]
  25. H. Kadono, M. Ogusu, and S.Toyooka, "Phase-shifting common-path interferometer using a liquid-crystal modulator," Opt. Commun. 110, 391-400 (1994). [CrossRef]
  26. J. Gluckstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268-282 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited