OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Integrated semiconductor optical sensors for cellular and neural imaging

Ofer Levi, Thomas T. Lee, Meredith M. Lee, Stephen J Smith, and James S. Harris  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1881-1889 (2007)
http://dx.doi.org/10.1364/AO.46.001881


View Full Text Article

Enhanced HTML    Acrobat PDF (1926 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We review integrated optical sensors for functional brain imaging, localized index-of-refraction sensing as part of a lab-on-a-chip, and in vivo continuous monitoring of tumor and cancer stem cells. We present semiconductor-based sensors and imaging systems for these applications. Measured intrinsic optical signals and tissue optics simulations indicate the need for high dynamic range and low dark-current neural sensors. Simulated and measured reflectance spectra from our guided resonance filter demonstrate the capability for index-of-refraction sensing on cellular scales, compatible with integrated biosensors. Finally, we characterized a thermally evaporated emission filter that can be used to improve sensitivity for in vivo fluorescence sensing.

© 2007 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(130.6010) Integrated optics : Sensors
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Optics in neuroscience

History
Original Manuscript: July 10, 2006
Revised Manuscript: November 21, 2006
Manuscript Accepted: November 22, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Ofer Levi, Thomas T. Lee, Meredith M. Lee, Stephen J Smith, and James S. Harris, "Integrated semiconductor optical sensors for cellular and neural imaging," Appl. Opt. 46, 1881-1889 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1881


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  2. J. Selb, J. J. Stott, M. A. Franceschini, A. G. Sorensen, and D. A. Boas, "Improved sensitivity to cerebral hemodynamics during brain activation with a time-gated optical system: analytical model and experimental validation," J. Biomed. Opt. 10, 11013 (2005). [CrossRef] [PubMed]
  3. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. U.S.A. 102, 18252-18257 (2005). [CrossRef] [PubMed]
  4. F. Helmchen and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  5. J. A. Conchello and J. W. Lichtman, "Optical sectioning microscopy," Nat. Methods 2, 920-931 (2005). [CrossRef] [PubMed]
  6. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "in vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30, 2272-2274 (2005). [CrossRef] [PubMed]
  7. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003). [CrossRef] [PubMed]
  8. L. S. Schocket, A. J. Witkin, J. G. Fujimoto, T. H. Ko, J. S. Schuman, A. H. Rogers, C. Baumal, E. Reichel, and J. S. Duker, "Ultrahigh-resolution optical coherence tomography in patients with decreased visual acuity after retinal detachment repair," Ophthalmology 113, 666-672 (2006). [CrossRef] [PubMed]
  9. S. D. Giattina, B. K. Courtney, P. R. Herz, M. Harman, S. Shortkroff, D. L. Stamper, B. Liu, J. G. Fujimoto, and M. E. Brezinski, "Assessment of coronary plaque collagen with polarization sensitive optical coherence tomography (PS-OCT)," Int. J. Cardiol. 107, 400-409 (2006). [CrossRef] [PubMed]
  10. W. Piyawattanametha, R. P. Barretto, T. H. Ko, B. A. Flusberg, E. D. Cocker, H. Ra, D. Lee, O. Solgaard, and M. J. Schnitzer, "Fast-scanning two-photon fluorescence imaging based on a microelectromechanical systems two-dimensional scanning mirror," Opt. Lett. 31, 2018-2020 (2006). [CrossRef] [PubMed]
  11. M. D. Chidley, K. D. Carlson, R. R. Richards-Kortum, and M. R. Descour, "Design, assembly, and optical bench testing of a high-numerical-aperture miniature injection-molded objective for fiber-optic confocal reflectance microscopy," Appl. Opt. 45, 2545-2554 (2006). [CrossRef] [PubMed]
  12. T. D. Wang, C. H. Contag, M. J. Mandella, N. Y. Chan, and G. S. Kino, "Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning," J. Biomed. Opt. 9, 735-742 (2004). [CrossRef] [PubMed]
  13. K. T. Samiee, J. M. Moran-Mirabal, Y. K. Cheung, and H. G. Craighead, "Zero mode waveguides for single-molecule spectroscopy on lipid membranes," Biophys. J. 90, 3288-3299 (2006). [CrossRef] [PubMed]
  14. K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004). [CrossRef] [PubMed]
  15. K. H. Jeong, J. Kim, and L. P. Lee, "Biologically inspired artificial compound eyes," Science 312, 557-561 (2006). [CrossRef] [PubMed]
  16. J. M. Godin, V. Lien, and Y.-H. Lo, "Two-dimensional lenses microfabricated in PDMS for integrated fluidic photonic devices," in 2006 Conference on Lasers and Electro-Optics (CLEO, 2006). [CrossRef]
  17. J. Seo and L. P. Lee, "Disposable integrated microfluidics with self-aligned planar microlenses," Sens. Actuators 99, 615-622 (2004). [CrossRef]
  18. Z. Luo, J. Seo, N. Cheung, L. P. Lee, T. D. Sands, and J. A. Chediak, "Heterogeneous integration of CdS filters with GaN LEDs for fluorescence detection microsystems," Sens. Actuators A 111, 1-7 (2004). [CrossRef]
  19. V. P. Chodavarapu, R. M. Bukowski, S. J. Kim, A. H. Titus, A. N. Cartwright, and F. V. Bright, "Multi-sensor system based on phase detection, an LED array, and luminophore-doped xerogels," Electron. Lett. 41, 1031-1033 (2005). [CrossRef]
  20. E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J Smith, W. E. Moerner, and J. S. Harris, "Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing," IEEE J. Quantum Electron. 40, 491-498 (2004). [CrossRef]
  21. E. Thrush, O. Levi, L. J. Cook, J. Deich, A. Kurtz, S. J Smith, W. E. Moerner, and J. S. Harris, "Monolithically integrated semiconductor fluorescence sensor for microfluidic applications," Sens. Actuators B 105, 393-399 (2005). [CrossRef]
  22. A. Grinvald, E. Lieke, R. D. Frostig, C. D. Gilbert, and T. N. Wiesel, "Functional architecture of cortex revealed by optical imaging of intrinsic signals," Nature 324, 361-364 (1986). [CrossRef] [PubMed]
  23. V. A. Kalatsky and M. P. Stryker, "New paradigm for optical imaging: Temporally encoded maps of intrinsic signal," Neuron 38, 529-545 (2003). [CrossRef] [PubMed]
  24. D. B. Polley, E. Kvasnak, and R. D. Frostig, "Naturalistic experience transforms sensory maps in the adult cortex of caged animals," Nature 429, 67-71 (2004). [CrossRef] [PubMed]
  25. M. Francheschini and D. Boas, "Noninvasive measurement of neuronal activity with near-infrared optical imaging," Neuroimage 21, 372-386 (2004). [CrossRef]
  26. A. W. Toga, J. C. Mazziotta, A. W. Toga, and J. C. Mazziotta, Brain Mapping: the Methods (Academic, 1996).
  27. S. A. Sheth, M. Nemoto, M. W. Guiou, M. A. Walker, and A. W. Toga, "Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity," J. Cereb. Blood Flow Metab. 25, 830-841 (2005). [CrossRef] [PubMed]
  28. E. M. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, "Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media," Opt. Lett. 29, 1650-1652 (2004). [CrossRef] [PubMed]
  29. M. Wolf, U. Wolf, J. Choi, R. Gupta, L. Safonova, L. Paunescu, A. Michalos, and E. Gratton, "Functional frequency-domain near infrared spectroscopy detects fast neural signal in the motor cortex," Neuroimage 17, 1868-1875 (2002). [CrossRef] [PubMed]
  30. D. Rector, K. Carter, P. Volegov, and J. George, "Spatio-temporal mapping of rat whisker barrels with fast scattered light signals," Neuroimage 26, 619-627 (2005). [CrossRef] [PubMed]
  31. M. Stetter and K. Obermayer, "Simulation of scanning laser techniques for optical imaging of blood-related intrinsic signals," J. Opt. Soc. Am. A 16, 58-70 (1999). [CrossRef]
  32. D. J. Cuccia, F. Bevilacqua, A. J. Durkin, and B. J. Tromberg, "Modulated imaging: quantitative analysis and tomography of turbid media in the spatial-frequency domain," Opt. Lett. 30, 1354-1356 (2005). [CrossRef] [PubMed]
  33. T. T. Lee, O. Levi, J. Cang, M. Kaneko, M. P. Stryker, S. J Smith, K. V. Shenoy, and J. S. Harris, "Integrated semiconductor optical sensors for minimally-invasive imaging of brain function," in Proceedings of the 28th IEEE Engineering in Medicine and Biology Society Annual International Conference (IEEE, 2006). [PubMed]
  34. Laboratory of Neuro Imaging, "Rat Atlas" (The Laboratory of Neuro Imaging at the University of California at Los Angeles (LONI), 2006), http://www.loni.ucla.edu/.
  35. D. Rector, G. Poe, M. Kristensen, and R. Harper, "Light scattering changes follow evoked potentials from hippocampal Schaffer collateral stimulation," J. Neurophysiol. 78, 1707-1713 (1997). [PubMed]
  36. L. Cohen, B. Hille, and R. Keynes, "Changes in axon birefringence during the action potential," J. Physiology 211, 495-515 (1970).
  37. L. Cohen, R. Keynes, and D. Landowne, "Changes in light scattering that accompany the action potential in squid giant axons: potential-dependent components," J. Physiol. 224, 701-725 (1972). [PubMed]
  38. V. Lirtsman, R. Ziblat, M. Golosovsky, D. Davidov, R. Pogreb, V. Sacks-Granek, and J. Rishpon, "Surface-plasmon resonance with infrared excitation: studies of phospholipid membrane growth," J. Appl. Phys. 98, 93506 (2005). [CrossRef]
  39. R. Ziblat, V. Lirtsman, D. Davidov, and B. Aroeti, "Infrared surface plasmon resonance: a novel tool for real time sensing of variations in living cells," Biophys. J. 90, 1-8 (2006). [CrossRef]
  40. D. Rosenblatt, A. Sharon, and A. A. Friesem, "Resonant grating waveguide structures," IEEE J. Quantum Electron. 33, 2038-2059 (1997). [CrossRef]
  41. T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, "Two photon fluorescence sensors based on resonant grating waveguide structures," Sens. Actuators B 107, 121-125 (2005). [CrossRef]
  42. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002). [CrossRef]
  43. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef] [PubMed]
  44. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, "Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods," Appl. Opt. 39, 6498-6507 (2000). [CrossRef]
  45. R. S. Negrin and C. H. Contag, "In vivo imaging using bioluminescence: a tool for probing graft-versus-host disease," Nat. Rev. Immunol. 6, 484-490 (2006). [CrossRef] [PubMed]
  46. A. De and S. S. Gambhir, "Noninvasive imaging of protein-protein interactions from live cells and living subjects using bioluminescence resonance energy transfer," FASEB J. 19, 2017-2019 (2005). [PubMed]
  47. Z. Cheng, J. Levi, Z. Xiong, O. Gheysens, S. Keren, X. Chen, and S. S. Gambhir, "Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice," Bioconjugate Chem. 17, 662-669 (2006). [CrossRef]
  48. D. Abookasis, D. J. Cuccia, J. S. You, A. J. Durkin, and B. J. Tromberg, "Towards 3D mapping and correction of optical properties in turbid media based on spatially modulated illumination," in 2006 Biomedical Optics Topical Meeting (Optical Society of America, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited