OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 5 — May. 17, 2007

Liquid-crystal tunable filter spectral imaging for brain tumor demarcation

Steven C. Gebhart, Reid C. Thompson, and Anita Mahadevan-Jansen  »View Author Affiliations


Applied Optics, Vol. 46, Issue 10, pp. 1896-1910 (2007)
http://dx.doi.org/10.1364/AO.46.001896


View Full Text Article

Enhanced HTML    Acrobat PDF (1819 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Past studies have demonstrated that combined fluorescence and diffuse reflectance spectroscopy can successfully discriminate between normal, tumor core, and tumor margin tissues in the brain. To achieve efficient, real-time surgical resection guidance with optical biopsy, probe-based spectroscopy must be extended to spectral imaging to spatially demarcate the tumor margins. We describe the design and characterization of a combined fluorescence and diffuse reflectance imaging system that uses liquid-crystal tunable filter technology. Experiments were conducted to quantitatively determine the linearity, field of view, spatial and spectral resolution, and wavelength sensitivity of the imaging system. Spectral images were acquired from tissue phantoms, mouse brain in vitro, and human cortex in vivo for functional testing of the system. The spectral imaging system produces measured intensities that are linear with sample emission intensity and integration time and possesses a 1 in. (2.54 cm) field of view for a 7 in. (18 cm) object distance. The spectral resolution is linear with wavelength, and the spatial resolution is pixel-limited. The sensitivity spectra for the imaging system provide a guide for the distribution of total image integration time between wavelengths. Functional tests in vitro demonstrate the capability to spectrally discriminate between brain tissues based on exogenous fluorescence contrast or endogenous tissue composition. In vivo imaging captures adequate fluorescence and diffuse reflectance intensities within a clinically viable 2 min imaging time frame and demonstrates the importance of hemostasis to acquired signal strengths and imaging speed.

© 2007 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(260.2510) Physical optics : Fluorescence
(300.6170) Spectroscopy : Spectra

ToC Category:
Optics in cancer research

History
Original Manuscript: July 3, 2006
Revised Manuscript: November 24, 2006
Manuscript Accepted: November 30, 2006
Published: March 13, 2007

Virtual Issues
Vol. 2, Iss. 5 Virtual Journal for Biomedical Optics

Citation
Steven C. Gebhart, Reid C. Thompson, and Anita Mahadevan-Jansen, "Liquid-crystal tunable filter spectral imaging for brain tumor demarcation," Appl. Opt. 46, 1896-1910 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-10-1896


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, C. Smigal, and M. J. Thun, "Cancer statistics, 2006," CA Cancer J. Clin. 56, 106-130 (2006). [CrossRef] [PubMed]
  2. Central Brain Tumor Registry of the United States, "Primary Brain Tumors in the United States Statistical Report, 1998-2002 Years Data Collected," http://www.cbtrus.org, 2005-2006.
  3. M. Ammirati, N. Vick, Y. L. Liao, I. Ciric, and M. Mikhael, "Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas," Neurosurgery 21, 201-206 (1987). [CrossRef] [PubMed]
  4. M. C. Chamberlain and P. A. Kormanik, "Practical guidelines for the treatment of malignant gliomas," West J. Med. 168, 114-120 (1998). [PubMed]
  5. A. Kowalczuk, R. L. Macdonald, C. Amidei, G. Dohrmann, 3rd, R. K. Erickson, J. Hekmatpanah, S. Krauss, S. Krishnasamy, G. Masters, S. F. Mullan, A. J. Mundt, P. Sweeney, E. E. Vokes, B. K. Weir, and R. L. Wollman, "Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas," Neurosurgery 41, 1028-1036 (1997). [CrossRef] [PubMed]
  6. M. T. Selch, B. W. Goy, S. P. Lee, S. El-Sàdin, P. Kincaid, S. H. Park, and H. R. Withers, "Gangliogliomas: experience with 34 patients and review of the literature," Am. J. Clin. Oncol. 21, 557-564 (1998). [CrossRef] [PubMed]
  7. S. A. Toms, D. Z. Ferson, and R. Sawaya, "Basic surgical techniques in the resection of malignant gliomas," J. Neuro-Oncol. 42, 215-226 (1999). [CrossRef]
  8. R. J. Maciunas, Interactive Image-Guided Neurosurgery (American Association of Neurological Surgeons, 1993).
  9. R. J. Maciunas, Minimally Invasive Therapy of the Brain (Thieme, 1997).
  10. P. D. LeRoux, T. C. Winter, M. S. Berger, L. A. Mack, K. Wang, and J. P. Elliott, "A comparison between preoperative magnetic resonance and intraoperative ultrasound tumor volumes and margins," J. Clin. Ultrasound 22, 29-36 (1994). [CrossRef] [PubMed]
  11. D. L. Hill, C. R. Maurer, Jr., R. J. Maciunas, J. A. Barwise, J. M. Fitzpatrick, and M. Y. Wang, "Measurement of intraoperative brain surface deformation under a craniotomy," Neurosurgery 43, 514-526; discussion 527-528 (1998). [CrossRef] [PubMed]
  12. N. L. Dorward, O. Alberti, B. Velani, F. A. Gerritsen, W. F. Harkness, N. D. Kitchen, and D. G. Thomas, "Postimaging brain distortion: magnitude, correlates, and impact on neuronavigation," J. Neurosurg. 88, 656-662 (1998). [CrossRef] [PubMed]
  13. L. M. Auer and V. V. Velthoven, Intraoperative Ultrasound Imaging in Neurosurgery: Comparison with CT and MRI (Springer-Verlag, 1990). [CrossRef]
  14. J. E. Knake, R. A. Bowerman, T. M. Silver, and S. McCracken, "Neurosurgical applications of intraoperative ultrasound," Radiol. Clin. North Am. 23, 73-90 (1985). [PubMed]
  15. S. K. Majumder, S. C. Gebhart, M. Johnson, R. C. Thompson, W.-C. Lin, and A. Mahadevan-Jansen, "A probability-based multiclass diagnostic algorithm for in vivo optical separation of tumor margin and tumor from normal human brain tissue," Appl. Spectrosc. (to be published). [PubMed]
  16. W.-C. Lin, S. A. Toms, M. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "In vivo brain tumor demarcation using optical spectroscopy," Photochem. Photobiol. 73, 396-402 (2001). [CrossRef] [PubMed]
  17. W.-C. Lin, S. A. Toms, M. Motamedi, E. D. Jansen, and A. Mahadevan-Jansen, "Brain tumor demarcation using optical spectroscopy; an in vitro study," J. Biomed. Opt. 5, 214-220 (2000). [CrossRef] [PubMed]
  18. S. A. Toms, W. C. Lin, R. J. Weil, M. D. Johnson, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative optical spectroscopy identifies infiltrating glioma margins with high sensitivity," Neurosurgery 57, 382-391 (2005). [CrossRef] [PubMed]
  19. S. C. Gebhart, S. K. Majumder, and A. Mahadevan-Jansen, "Comparison of spectral variation from spectroscopy to spectral imaging," Appl. Opt. 46, 1343-1360 (2007). [CrossRef] [PubMed]
  20. J. N. Y. Qu, H. P. Chang, and S. M. Xiong, "Fluorescence spectral imaging for characterization of tissue based on multivariate statistical analysis," J. Opt. Soc. Am. A 19, 1823-1831 (2002). [CrossRef]
  21. N. Ramanujam, J. Chen, K. Gossage, R. Richards-Kortum, and B. Chance, "Fast and noninvasive fluorescence imaging of biological tissues in vivo using a flying-spot scanner," IEEE Trans. Biomed. Eng. 48, 1034-1041 (2001). [CrossRef] [PubMed]
  22. S. Andersson-Engels, G. Canti, R. Cubeddu, C. Eker, C. af Klinteberg, A. Pifferi, K. Svanberg, S. Svanberg, P. Taroni, G. Valentini, and I. Wang, "Preliminary evaluation of two fluorescence imaging methods for the detection and the delineation of basal cell carcinomas of the skin," Lasers Surg. Med. 26, 76-82 (2000). [CrossRef] [PubMed]
  23. V. V. Lazarev, R. A. Roth, Y. Kazakevich, and J. Hang, "Detection of premalignant oral lesions in hamsters with an endoscopic fluorescence imaging system," Cancer 85, 1421-1429 (1999). [CrossRef] [PubMed]
  24. J. Hewett, V. Nadeau, J. Ferguson, H. Moseley, S. Ibbotson, J. W. Allen, W. Sibbett, and M. Padgett, "The application of a compact multispectral imaging system with integrated excitation source to in vivo monitoring of fluorescence during topical photodynamic therapy of superficial skin cancers," Photochem. Photobiol. 73, 278-282 (2001). [CrossRef] [PubMed]
  25. R. G. Nadeau and W. Groner, "The role of a new noninvasive imaging technology in the diagnosis of anemia," J. Nutr. 131, 1610S-1614S (2001). [PubMed]
  26. U. Thomale, K. Schaser, A. W. Unterberg, and J. F. Stover, "Visualization of rat pial microcirculation using the novel orthogonal polarized spectral (OPS) imaging after brain injury," J. Neurosci. Methods 108, 85-90 (2001). [CrossRef] [PubMed]
  27. S. Gebhart, D. Stokes, T. Vo-Dinh, and A. Mahadevan-Jansen, "Instrumentation considerations in spectral imaging for tissue demarcation: comparing three methods of spectral resolution," in SPIE Photonics West, Spectral Imaging: Instrumentation, Applications, and Analysis III, R. Levenson, ed., Proc. SPIE 5694, 41-52 (2005).
  28. H. R. Morris, C. C. Hoyt, and P. J. Treado, "Imaging spectrometers for fluorescence and Raman microscopy-acoustooptic and liquid-crystal tunable filters," Appl. Spectrosc. 48, 857-866 (1994). [CrossRef]
  29. O. Khait, S. Smirnov, and C. D. Tran, "Multispectral imaging microscope with millisecond time resolution," Anal. Chem. 73, 732-739 (2001). [CrossRef] [PubMed]
  30. C. D. Tran, "Development and analytical applications of multispectral imaging techniques: an overview," Fresenius' J. Anal. Chem. 369, 313-319 (2001). [CrossRef]
  31. C. Balas, "A novel optical imaging method for the early detection, quantitative grading, and mapping of cancerous and precancerous lesions of cervix," IEEE Trans. Biomed. Eng. 48, 96-104 (2001). [CrossRef] [PubMed]
  32. S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "Characterization of a spectral imaging system," in SPIE Photonics West, Spectral Imaging: Instrumentation, Applications and Analysis II, R. Levenson, G. Bearman, and A. Mahadevan-Jansen, eds., Proc. SPIE 4959, 34-45 (2003). [CrossRef]
  33. H. Fabian, N. A. Thi, M. Eiden, P. Lasch, J. Schmitt, and D. Naumann, "Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy," Biochim. Biophys. Acta 1758, 874-882 (2006). [CrossRef] [PubMed]
  34. D. T. Dicker, J. Lerner, P. Van Belle, S. F. Barth, D. T. Guerry, M. Herlyn, D. E. Elder, and W. S. El-Deiry, "Differentiation of normal skin and melanoma using high resolution hyperspectral imaging," Cancer Biol. Ther. 5, 1033-1038 (2006). [CrossRef] [PubMed]
  35. K. R. Bambery, E. Schultke, B. R. Wood, S. T. Rigley MacDonald, K. Ataelmannan, R. W. Griebel, B. H. Juurlink, and D. McNaughton, "A Fourier transform infrared microspectroscopic imaging investigation into an animal model exhibiting glioblastoma multiforme," Biochim. Biophys. Acta 1758, 900-907 (2006). [CrossRef] [PubMed]
  36. M. E. Martin, M. Wabuyele, M. Panjehpour, B. Overholt, R. DeNovo, S. Kennel, G. Cunningham, and T. Vo-Dinh, "An AOTF-based dual-modality hyperspectral imaging system (DMHSI) capable of simultaneous fluorescence and reflectance imaging," Med. Eng. Phys. 28, 149-155 (2006). [CrossRef]
  37. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, "Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection," Ann. Biomed. Eng. 34, 1061-1068 (2006). [CrossRef] [PubMed]
  38. I. M. Orfanoudaki, G. C. Themelis, S. K. Sifakis, D. H. Fragouli, J. G. Panayiotides, E. M. Vazgiouraki, and E. E. Koumantakis, "A clinical study of optical biopsy of the uterine cervix using a multispectral imaging system," Gynecol. Oncol. 96, 119-131 (2005). [CrossRef]
  39. S. C. Gebhart, W.-C. Lin, and A. Mahadevan-Jansen, "In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling," Phys. Med. Biol. 51, 2011-2027 (2006). [CrossRef] [PubMed]
  40. J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. J. C. M. Sterenborg, and M. J. C. Vangemert, "Double-integrating-sphere system for measuring the optical properties of tissue," Appl. Opt. 32, 399-410 (1993). [CrossRef] [PubMed]
  41. R. L. Sidman, B. Kosaras, B. M. Misra, and S. L. Senft, "High resolution mouse brain atlas," http://www.hms.harvard.edu/research/brain, 1999.
  42. W.-C. Lin, S. A. Toms, E. D. Jansen, and A. Mahadevan-Jansen, "Intraoperative application of optical spectroscopy in the presence of blood," IEEE J. Sel. Top. Quantum Electron. 7, 996-1003 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited