OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 6 — Jun. 13, 2007

Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images

John Virostko, Alvin C. Powers, and E. Duco Jansen  »View Author Affiliations

Applied Optics, Vol. 46, Issue 13, pp. 2540-2547 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (715 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We characterize the capabilities and limitations of the Living Image Software 3D Analysis package (Xenogen, Alameda, California) in the reconstruction of calibrated light sources. Sources shallower than the mean free path of light propagation suffered reconstruction inaccuracy. For sources deeper than the mean free path, the average error in depth and intensity reconstruction was less than 4% and 12%, respectively, for homogeneous tissue. The reconstruction of luminescent beads implanted within an optically heterogeneous mouse abdomen proved less accurate. The ability to distinguish multiple sources decreased with increasing source depth. A number of factors influence the accuracy of light source reconstruction.

© 2007 Optical Society of America

OCIS Codes
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: August 9, 2006
Revised Manuscript: December 14, 2006
Manuscript Accepted: December 20, 2006
Published: April 9, 2007

Virtual Issues
Vol. 2, Iss. 6 Virtual Journal for Biomedical Optics

John Virostko, Alvin C. Powers, and E. Duco Jansen, "Validation of luminescent source reconstruction using single-view spectrally resolved bioluminescence images," Appl. Opt. 46, 2540-2547 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. D. McElroy, H. H. Seliger, and E. H. White, "Mechanism of bioluminescence, chemiluminescence and enzyme function in the oxidation of firefly luciferin," Photochem. Photobiol. 10, 153-170 (1969).
  2. L. J. Kricka, J. Stroebel, and P. E. Stanley, "Bioluminescent fusion conjugates and bioluminescent immunoassays: 1988-1998," Luminescence 14, 39-46 (1999). [CrossRef]
  3. C. H. Contag, S. D. Spilman, P. R. Contag, M. Oshiro, B. Eames, P. Dennery, D. K. Stevenson, and D. A. Benaron, "Visualizing gene expression in living mammals using a bioluminescent reporter," Photochem. Photobiol. 66, 523-531 (1997).
  4. M. Edinger, Y. A. Cao, Y. S. Hornig, D. E. Jenkins, M. R. Verneris, M. H. Bachmann, R. S. Negrin, and C. H. Contag, "Advancing animal models of neoplasia through in vivo bioluminescence imaging," Eur. J. Cancer 38, 2128-2136 (2002). [CrossRef]
  5. A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491-495 (2000). [CrossRef]
  6. C. H. Contag and M. H. Bachmann, "Advances in in vivo bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235-260 (2002). [CrossRef]
  7. C. H. Contag and B. D. Ross, "It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology," J. Magn. Reson. Imaging 16, 378-387 (2002). [CrossRef]
  8. J. F. Mercier, A. Salahpour, S. Angers, A. Breit, and M. Bouvier, "Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer," J. Biol. Chem. 277, 44925-44931 (2002). [CrossRef]
  9. G. R. Rettig, M. McAnuff, D. Liu, J. S. Kim, and K. G. Rice, "Quantitative bioluminescence imaging of transgene expression in vivo," Anal Biochem. 355, 90-94 (2006). [CrossRef]
  10. Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Mol. Imaging 3, 117-124 (2004). [CrossRef]
  11. J. Virostko, Z. Chen, M. Fowler, G. Poffenberger, A. C. Powers, and E. D. Jansen, "Factors influencing quantification of in vivo bioluminescence imaging: application to assessment of pancreatic islet transplants," Mol. Imaging 3, 333-342 (2004). [CrossRef]
  12. S. Li, Q. Zhang, and H. Jiang, "Two-dimensional bioluminescence tomography: numerical simulations and phantom experiments," Appl Opt. 45, 3390-3394 (2006). [CrossRef]
  13. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Effect of optical property estimation accuracy on tomographic bioluminescence imaging: simulation of a combined optical-PET (OPET) system," Phys. Med. Biol. 51, 2045-2053 (2006). [CrossRef]
  14. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, "Spectrally resolved bioluminescence optical tomography," Opt Lett. 31, 365-367 (2006). [CrossRef]
  15. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421-5441 (2005). [CrossRef]
  16. X. J. Gu, Q. H. Zhang, L. Larcom, and H. B. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12, 3996-4000 (2004). [CrossRef]
  17. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Acad. Radiol. 11, 1029-1038 (2004). [CrossRef]
  18. A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opin. Biotechnol. 16, 79-88 (2005). [CrossRef]
  19. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225-4241 (2005). [CrossRef]
  20. V. Ntziachristos, C. Bremer, E. E. Graves, J. Ripoll, and R. Weissleder, "In vivo tomographic imaging of near-infrared fluorescent probes," Mol. Imaging 1, 82-88 (2002). [CrossRef]
  21. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems in bioluminescence tomography," Med. Phys. 31, 2289-2299 (2004). [CrossRef]
  22. G. Zacharakis, H. Kambara, H. Shih, J. Ripoll, J. Grimm, Y. Saeki, R. Weissleder, and V. Ntziachristos, "Volumetric tomography of fluorescent proteins through small animals in vivo," Proc. Natl. Acad. Sci. USA 102, 18252-18257 (2005). [CrossRef]
  23. B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432-440 (2001). [CrossRef]
  24. C. Kuo, H. Ahsan, J. Hunter, T. L. Troy, H. Xu, N. Zhang, and B. W. Rice, "In vivo bioluminescent tomography using multispectral and multiperspective image data," in OSA Technical Digest on Biomedical Optics (Optical Society of America, 2006), paper TuG4.
  25. O. Coquoz, T. L. Troy, D. Jekic-McMullen, and B. W. Rice, "Determination of depth of in vivo bioluminescent signals using spectral imaging technique," in Genetically Engineered and Optical Probes for Biomedical Applications, A. P. Savitsky, P. J. Bernhop, R. Raghavachari, and S. I. Achilefu, eds., Proc. SPIE 4967, 37-45 (2003). [CrossRef]
  26. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multi-spectral imaging," J. Biomed. Opt. (to be published).
  27. G. Marquez, L. H. V. Wang, S. P. Lin, J. A. Schwartz, and S. L. Thomsen, "Anisotropy in the absorption and scattering spectra of chicken breast tissue," Appl. Opt. 37, 798-804 (1998).
  28. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
  29. D. C. Comsa, T. J. Farrell, and M. S. Patterson, "Quantification of bioluminescence images of point source objects using diffusion theory models," Phys. Med. Biol. 51, 3733-3746 (2006). [CrossRef]
  30. T. F. Massoud and S. S. Gambhir, "Molecular imaging in living subjects: seeing fundamental biological processes in a new light," Genes Dev. 17, 545-580 (2003). [CrossRef]
  31. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  32. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, "Three-dimensional optical tomography: resolution in small-object imaging," Appl. Opt. 42, 3117-3128 (2003).
  33. W. X. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005). [CrossRef]
  34. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited