OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Fourier-domain digital holographic optical coherence imaging of living tissue

Kwan Jeong, John J. Turek, and David D. Nolte  »View Author Affiliations


Applied Optics, Vol. 46, Issue 22, pp. 4999-5008 (2007)
http://dx.doi.org/10.1364/AO.46.004999


View Full Text Article

Enhanced HTML    Acrobat PDF (12788 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Digital holographic optical coherence imaging is a full-frame coherence-gated imaging approach that uses a CCD camera to record and reconstruct digital holograms from living tissue. Recording digital holograms at the optical Fourier plane has advantages for diffuse targets compared with Fresnel off-axis digital holography. A digital hologram captured at the Fourier plane requires only a 2D fast Fourier transform for numerical reconstruction. We have applied this technique for the depth-resolved imaging of rat osteogenic tumor multicellular spheroids and acquired cross-section images of the anterior segment and the retinal region of a mouse eye. A penetration depth of 1.4   mm for the tumor spheroids was achieved.

© 2007 Optical Society of America

OCIS Codes
(070.2590) Fourier optics and signal processing : ABCD transforms
(090.1760) Holography : Computer holography
(110.6150) Imaging systems : Speckle imaging
(170.1650) Medical optics and biotechnology : Coherence imaging
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Imaging Systems

History
Original Manuscript: December 18, 2006
Revised Manuscript: April 11, 2007
Manuscript Accepted: April 20, 2007
Published: July 6, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Kwan Jeong, John J. Turek, and David D. Nolte, "Fourier-domain digital holographic optical coherence imaging of living tissue," Appl. Opt. 46, 4999-5008 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-22-4999


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. A. Stetson, "Holographic fog penetration," J. Opt. Soc. Am. 57, 1060-1061 (1967). [CrossRef]
  2. K. G. Spears, J. Serafin, N. H. Abramson, X. Zhu, and H. Bjelkhagen, "Chronocoherent imaging for medicine," IEEE Trans. Biomed. Eng. 36, 1210-1214 (1989). [CrossRef] [PubMed]
  3. A. V. Mamaev, L. I. Ivleva, N. M. Polozkov, and V. V. Shkunov, "Photorefractive visualization through opaque scattering media," in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Proceedings Series (Optical Society of America, 1993), pp. 632-634.
  4. S. C. W. Hyde, N. P. Barry, R. Jones, J. C. Dainty, and P. M. W. French, "Sub-100 μm depth-resolved holographic imaging through scattering media in the near infrared," Opt. Lett. 20, 2330-2332 (1995). [CrossRef] [PubMed]
  5. S. C. W. Hyde, R. Jones, N. P. Barry, J. C. Dainty, P. M. W. French, K. M. Kwolek, D. D. Nolte, and M. R. Melloch, "Depth-resolved holography through turbid media using photorefraction," IEEE J. Sel. Top. Quant. Electron. 2, 965-975 (1996). [CrossRef]
  6. P. Yu, M. Mustata, L. Peng, J. J. Turek, M. R. Melloch, P. M. W. French, and D. D. Nolte, "Holographic optical coherence imaging of rat osteogenic sarcoma tumor spheroids," Appl. Opt. 43, 4862-4873 (2004). [CrossRef] [PubMed]
  7. K. Jeong, L. Peng, J. J. Turek, M. R. Melloch, and D. D. Nolte, "Fourier-domain holographic optical coherence imaging of tumor spheroids and mouse eye," Appl. Opt. 44, 1798-1805 (2005). [CrossRef] [PubMed]
  8. M. Tziraki, R. Jones, P. M. W. French, M. R. Melloch, and D. D. Nolte, "Photorefractive holography for imaging through turbid media using low coherence light," Appl. Phys. B 70, 151-154 (2000). [CrossRef]
  9. R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, "Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses," J. Opt. Soc. Am. B 11, 1038-1044 (1994). [CrossRef]
  10. M. A. Kronrod, L. P. Yaroslavski, and N. S. Merzlykov, "Computer synthesis of transparency holograms," Sov. Phys.-Tech. Phys. 17, 329-332 (1972).
  11. M. A. Kronrod, N. S. Merzlykov, and L. P. Yaroslavski, "Reconstruction of holograms with a computer," Sov. Phys.-Tech. Phys. 17, 333-334 (1972).
  12. U. Schnars and W. P. O. Jüptner, "Direct recording of holograms by a CCD-target and numerical reconstruction," Appl. Opt. 33, 179-181 (1994). [CrossRef] [PubMed]
  13. U. Schnars and W. P. O Jüptner, "Direct recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, R85-R101 (2002). [CrossRef]
  14. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, "Image formation in phase-shifting digital holography and applications to microscopy," Appl. Opt. 40, 6177-6186 (2001). [CrossRef]
  15. E. Cuche, F. Bevilacqua, and C. Depeursinge, "Digital holography for quantitative phase-contrast imaging," Opt. Lett. 24, 291-293 (1999). [CrossRef]
  16. E. Cuche, P. Marquet, and C. Depeursinge, "Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms," Appl. Opt. 38, 6994-7001 (1999). [CrossRef]
  17. C. Wagner, W. Osten, and S. Seebacher, "Direct shape measurement by digital wavefront reconstruction and multiwavelength contouring," Opt. Eng. 39, 79-85 (2000). [CrossRef]
  18. B. Javidi and T. Nomura, "Securing information by use of digital holography," Opt. Lett. 25, 28-30 (2000). [CrossRef]
  19. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, "Cell refractive index tomography by digital holographic microscopy," Opt. Lett. 31, 178-180 (2006). [CrossRef] [PubMed]
  20. G. Pedrini and S. Schedin, "Short coherence digital holography for 3D microscopy," Optik 112, 427-432 (2001). [CrossRef]
  21. L. Martínez-León, G. Pedrini, and W. Osten, "Applications of short-coherence digital holography in microscopy," Appl. Opt. 44, 3977-3984 (2005). [CrossRef] [PubMed]
  22. C. Yuan, H. Zhai, X. Wang, and L. Wu, "Lensless digital holography with short-coherence light source for three-dimensional surface contouring of reflecting micro-object," Opt. Commun. 270, 176-179 (2007). [CrossRef]
  23. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, "Time-domain optical coherence tomography with digital holographic microscopy," Appl. Opt. 44, 1806-1812 (2005). [CrossRef] [PubMed]
  24. L. Yu and M. K. Kim, "Variable tomographic scanning with wavelength scanning digital interference holography," Opt. Commun. 260, 462-468 (2006). [CrossRef]
  25. F. Montfort, T. Colomb, F. Charrière, J. Kühn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, "Submicrometer optical tomography by multiple-wavelength digital holographic microscopy," Appl. Opt. 45, 8209-8217 (2006). [CrossRef] [PubMed]
  26. K. Jeong, L. Peng, D. D. Nolte, and M. R. Melloch, "Fourier-domain holography in photorefractive quantum-well films," Appl. Opt. 43, 3802-3811 (2004). [CrossRef] [PubMed]
  27. K. Y. T. Seet, P. Blazkiewicz, P. Meredith, and A. V. Zvyagin, "Optical scatter imaging using digital Fourier microscopy," J. Phys. D: Appl. Phys. 38, 3590-3598 (2005). [CrossRef]
  28. P. Blazkiewicz, M. Gourlay, J. R. Tucker, A. D. Rakic, and A. V. Zvyagin, "Signal-to-noise ratio study of full-field Fourier-domain optical coherence tomography," Appl. Opt. 44, 7722-7729 (2005). [CrossRef] [PubMed]
  29. E. A. Swanson, D. Haung, M. R. Hee, and J. G. Fujimoto, "High-speed optical coherence domain reflectometry," Opt. Lett. 17, 151-153 (1992). [CrossRef] [PubMed]
  30. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, 1980).
  31. M. Tziraki, R. Jones, P. French, D. Nolte, and M. Melloch, "Short-coherence photorefractive holography in multiple-quantum-well devices using light-emitting diodes," Appl. Phys. Lett. 75, 1363-1365 (1999). [CrossRef]
  32. L. A. Kunz-Schughart, M. Kreutz, and R. Knuechel, "Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology," Int. J. Exp. Pathol. 79, 1-23 (1998). [CrossRef] [PubMed]
  33. K. Groebe and W. Mueller-Klieser, "On the relation between size of necrosis and diameter of tumor spheroids," Int. J. Radiat. Oncol. Biol. Phys. 34, 395-401 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited