OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 9 — Sep. 26, 2007

Application of the maximum entropy method to spectral-domain optical coherence tomography for enhancing axial resolution

Yoshiyuki Takahashi, Yuuki Watanabe, and Manabu Sato  »View Author Affiliations


Applied Optics, Vol. 46, Issue 22, pp. 5228-5236 (2007)
http://dx.doi.org/10.1364/AO.46.005228


View Full Text Article

Enhanced HTML    Acrobat PDF (1224 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time we applied the maximum entropy method (MEM) to spectral domain optical coherence tomography to enhance axial resolution (AR). The MEM estimates the power spectrum by fitting. For an onion with optimization of M = 70 , the AR of 18.8 μ m by discrete Fourier transform (DFT) was improved three times compared with peak widths. The calculation time by the MEM with M = 70 was 20 times longer than that of DFT. However, further studies are needed for practical applications, because the validity of the MEM depends on the sample structures.

© 2007 Optical Society of America

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: December 11, 2006
Revised Manuscript: April 10, 2007
Manuscript Accepted: April 18, 2007
Published: July 9, 2007

Virtual Issues
Vol. 2, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Yoshiyuki Takahashi, Yuuki Watanabe, and Manabu Sato, "Application of the maximum entropy method to spectral-domain optical coherence tomography for enhancing axial resolution," Appl. Opt. 46, 5228-5236 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-22-5228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomograpy," Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, "Submicrometer axial resolution optical coherence tomography," Opt. Lett. 27, 1800-1802 (2002). [CrossRef]
  3. K, Bizheva, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, M. Mei, R. Holzwarth, T. Hoelzenbein, V. Wacheck, and H. Pehamberger, "Compact, broad-bandwidth fiber laser for sub-2-μm axial resolution optical coherence tomography in the 1300-nm wavelength region," Opt. Lett. 28, 707-709 (2003). [CrossRef] [PubMed]
  4. A. D. Aguirre, N. Nishizawa, and J. G. Fujimoto, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1145-1160 (2006). [CrossRef] [PubMed]
  5. M. Bashkansky, B. D. Duncan, J. Reintjes, and P. R. Battle, "Signal processing for improving field cross-correlation function in optical coherence tomography," Appl. Opt. 37, 8137-8138 (1998).
  6. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, "Spectral shaping for non-Gaussian source spectral in optical coherence tomography," Opt. Lett. 27, 406-408 (2002). [CrossRef]
  7. D. Merino, C. Dainty, A. Bradu, and A. Gh. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser opthalmoscopy," Opt. Express 14, 3345-3353 (2006). [CrossRef] [PubMed]
  8. G. Hausler and M. W. Lindner, "Coherence rader and spectral rader--new tools for dermatological diagnostics," J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  10. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  11. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fijimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004). [CrossRef] [PubMed]
  12. R. A. Lgitgeb, W. Dolexler, A. Unterhuber, B. Hermann, T. Bajraszewki, T. Le, A. Sting, and A. F. Fercher, "Ultrahigh resolution Fourier domain optical coherence tomography," Opt. Express 12, 2156-2165 (2004). [CrossRef]
  13. S. H. Yun, G. J. Tearney, B. E. Bouma, B. H. Park, and J. F. de Boer, "High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength," Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]
  14. R. Huber, M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography," Opt. Express 14, 3225-3236 (2006). [CrossRef] [PubMed]
  15. M. Szkulmowski, M. Wajtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, and C. Randzewicz, "Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source," Opt. Commun. 246, 569-578 (2005). [CrossRef]
  16. E. D. J. Smith, N. Wada, W. Chujo, and D. D. Sampson, "High resolution OCDR using 1.55 μm supercontinuum source and quadrature spectral detection," Electron. Lett. 37, 1305-1307 (2001). [CrossRef]
  17. D. Marks, P. S. Camey, and S. A. Boppart, "Adaptive spectral apodization for sidelobe reduction in optical coherence tomography images," J. Biomed. Opt. 9, 1281-1287 (2004). [CrossRef] [PubMed]
  18. A. Ozcan, O. T. Inan, N. I. Maluf, G. T. A. Kovacs, M. J. F. Digonnet, and G. S. Kino, "Alternative data processing for frequency-domain optical coherence tomography," presented at the Conference on Lasers and Electro-Optics, CLEO2006 (Optical Society of America, 2006), paper CMZ3.
  19. S. Kawata, K. Minami, and S. Minami, "Superresolution of Fourier transform spectroscopy data by the maximum entropy method," Appl. Opt. 22, 3593-3598 (1983). [CrossRef] [PubMed]
  20. Y. Takahashi, Y. Watanabe, and M. Sato, "Application of the maximum entropy method to Fourier domain optical coherence tomography," presented at the Conference on Lasers and Electro-Optics, CLEO2006 (Optical Society of America, 2006), paper JTuD53.
  21. S. A. Teukolsky, W. H. Press, and W. T. Vetterling, Numerical Recipes in C (Cambridge U. Press, 1993).
  22. S. L. Marple, Jr., Digital Spectral Analysis (Prentice Hall, 1987).
  23. R. Kuc, Introduction to Digital Signal Processing (McGraw-Hill, 1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited