OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers

John R. Tucker, Johnathon L. Baque, Yah Leng Lim, Andrei V. Zvyagin, and Aleksandar D. Rakić  »View Author Affiliations


Applied Optics, Vol. 46, Issue 25, pp. 6237-6246 (2007)
http://dx.doi.org/10.1364/AO.46.006237


View Full Text Article

Enhanced HTML    Acrobat PDF (1607 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper we investigate the feasibility of a massively parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers (VCSELs) to measure surface profiles of displacement, distance, velocity, and liquid flow rate. The concept of the system is demonstrated using a prototype to measure the velocity at different radial points on a rotating disk, and the velocity profile of diluted milk in a custom built diverging-converging planar flow channel. It is envisaged that a scaled up version of the parallel self-mixing imaging system will enable real-time surface profiling, vibrometry, and flowmetry.

© 2007 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.7250) Instrumentation, measurement, and metrology : Velocimetry
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(280.2490) Remote sensing and sensors : Flow diagnostics
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry
(280.7250) Remote sensing and sensors : Velocimetry

ToC Category:
Remote sensing and sensors

History
Original Manuscript: February 20, 2007
Revised Manuscript: June 20, 2007
Manuscript Accepted: June 22, 2007
Published: August 22, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
John R. Tucker, Johnathon L. Baque, Yah Leng Lim, Andrei V. Zvyagin, and Aleksandar D. Rakić, "Parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers," Appl. Opt. 46, 6237-6246 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-25-6237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980). [CrossRef]
  2. K. Petermann, "External optical feedback phenomena in semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 480-489 (1995). [CrossRef]
  3. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, 1991).
  4. S. Donati, Electro-Optical Instrumentation (Prentice Hall, 2004).
  5. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity; Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005). [CrossRef]
  6. Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).
  7. G. P. Agrawal, "Line narrowing in a single-mode injection laser due to external optical feedback," IEEE J. Quantum Electron. 20, 468-471 (1984). [CrossRef]
  8. S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995). [CrossRef]
  9. G. Beheim and K. Fritsch, "Range finding using frequency-modulated laser diode," Appl. Opt. 25, 1439-1442 (1986). [CrossRef] [PubMed]
  10. J. H. Churnside, "Laser Doppler velocimetry by modulating a CO2 laser with backscattered light," Appl. Opt. 23, 61-66 (1984). [CrossRef] [PubMed]
  11. G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001). [CrossRef]
  12. M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992). [CrossRef] [PubMed]
  13. C. Zakian, M. Dickinson, and T. King, "Particle sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A , Pure Appl. Opt. 7, S445-S452 (2005). [CrossRef]
  14. G. Giuliani and M. Norgia, "Laser diode linewidth measurement by means of self-mixing interferometry," IEEE Photon. Technol. Lett. 12, 1028-1030 (2000). [CrossRef]
  15. Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004). [CrossRef]
  16. T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998). [CrossRef]
  17. E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999). [CrossRef]
  18. Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998). [CrossRef]
  19. P. J. de Groot and G. M. Gallatin, "Three-dimensional imaging coherent laser radar array," Opt. Eng. 28, 456-460 (1989).
  20. T. Bosch, N. Servagent, and S. Donati, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001). [CrossRef]
  21. T. C. Papanastasiou, Applied Fluid Mechanics (Prentice Hall, 1994).
  22. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992). [CrossRef]
  23. R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Appl. Opt. 20, 2097-107 (1981). [CrossRef] [PubMed]
  24. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-couple semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992). [CrossRef] [PubMed]
  25. F. F. M. de Mul, L. Scalise, A. N. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, "Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis," Appl. Opt. 41, 658-667 (2002). [CrossRef] [PubMed]
  26. L. Duteil, J. C. Bernengo, and W. Schalla, "A double wavelength laser Doppler system to investigate skin microcirculation," IEEE Trans. Biomed. Eng. BME-32, 439-447 (1985). [CrossRef]
  27. R. Lohwasser and G. Soelkner, "Experimental and theoretical laser-Doppler frequency spectra of a tissuelike model of a human head with capillaries," Appl. Opt. 38, 2128-2137 (1999). [CrossRef]
  28. A. Serov, W. Steenbergen, and F. de Mul, "Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor," Opt. Lett. 27, 300-302 (2002). [CrossRef]
  29. A. Serov, B. Steinacher, and T. Lasser, "Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera," Opt. Express 13, 3681-3689 (2005). [CrossRef] [PubMed]
  30. A. Serov and T. Lasser, "High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor," Opt. Express 13, 6416-6428 (2005). [CrossRef] [PubMed]
  31. Fluent. Inc., "fluent: robust, reliable, comprehensive CFD software," http://www.fluent.com/software/fluent/index.htm.
  32. J. H. Churnside, "Signal-to-noise in a backscatter-modulated Doppler velocimeter," Appl. Opt. 23, 2097-2106 (1984). [CrossRef] [PubMed]
  33. B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000). [CrossRef]
  34. C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003). [CrossRef]
  35. M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.
  36. K. W. Goossen, J. E. Cunningham, and A. V. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18, 1219-1221 (2006). [CrossRef]
  37. R. Wang, A. D. Rakić, and M. L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002). [CrossRef] [PubMed]
  38. F.-C. F. Tsai, C. J. O'Brien, N. S. Petrovic, and A. D. Rakić, "Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes," Appl. Opt. 44, 6380-6387 (2005). [CrossRef] [PubMed]
  39. L. Scalise and N. Paone, "Laser Doppler vibrometry based on the self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002). [CrossRef]
  40. Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited