OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Role of minerogenic particles in light scattering in lakes and a river in central New York

Feng Peng, Steven W. Effler, David O'Donnell, Mary Gail Perkins, and Alan Weidemann  »View Author Affiliations


Applied Optics, Vol. 46, Issue 26, pp. 6577-6594 (2007)
http://dx.doi.org/10.1364/AO.46.006577


View Full Text Article

Enhanced HTML    Acrobat PDF (1858 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The role of minerogenic particles in light scattering in several lakes and a river (total of ten sites) in central New York, which represent a robust range of scattering conditions, was evaluated based on an individual particle analysis technique of scanning electron microscopy interfaced with automated x-ray microanalysis and image analysis (SAX), in situ bulk measurements of particle scattering and backscattering coefficients ( b p and b b p ), and laboratory analyses of common indicators of scattering. SAX provided characterizations of the elemental x-ray composition, number concentration, particle size distribution (PSD), shape, and projected area concentration of minerogenic particles ( PAV m ) of sizes > 0.4   μm . Mie theory was applied to calculate the minerogenic components of b p ( b m ) and b b p ( b b , m ) with SAX data. Differences in PAV m , associated primarily with clay minerals and CaCO 3 , were responsible for most of the measured differences in both b p and b b p across the study sites. Contributions of the specified minerogenic particle classes to b m were found to correspond approximately to their contributions to PAV m . The estimates of b m represented substantial fractions of b p , whereas those of b b , m were the dominant component of b b p . The representativeness of the estimates of b m and b b , m was supported by their consistency with the bulk measurements. Greater uncertainty prevails for the b b , m estimates than those for b m , associated primarily with reported deviations in particle shapes from sphericity. The PSDs were well represented by the “B” component of the two-component model or a three parameter generalized gamma distribution [Deep-Sea Res. Part I 40, 1459 (1993)]. The widely applied Junge (hyperbolic) function performed poorly in representing the PSDs and the size dependency of light scattering in these systems, by overrepresenting the concentrations of submicrometer particles especially. Submicrometer particles were not important contributors to b m or b b , m .

© 2007 Optical Society of America

OCIS Codes
(120.5820) Instrumentation, measurement, and metrology : Scattering measurements
(180.5810) Microscopy : Scanning microscopy
(290.1350) Scattering : Backscattering
(290.4020) Scattering : Mie theory
(290.5850) Scattering : Scattering, particles

ToC Category:
Scattering

History
Original Manuscript: February 13, 2007
Revised Manuscript: July 11, 2007
Manuscript Accepted: July 17, 2007
Published: September 7, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Feng Peng, Steven W. Effler, David O'Donnell, Mary Gail Perkins, and Alan Weidemann, "Role of minerogenic particles in light scattering in lakes and a river in central New York," Appl. Opt. 46, 6577-6594 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-26-6577


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Stramski and D. A. Kiefer, "Light scattering by microorganisms in the open ocean," Prog. Oceanogr. 28, 343-383 (1991). [CrossRef]
  2. M. Jonasz and G. Fournier, "Approximation of the size distribution of marine particles by a sum of log-normal functions," Limnol. Oceanogr. 41, 744-754 (1996). [CrossRef]
  3. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, M. S. Twardowski, G. C. Chang, and T. D. Dickey, "Spectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf," J. Geophys. Res. , [Oceans] 106, 9509-9516 (2001). [CrossRef]
  4. D. Risovi?, "Effect of suspended particulate-size distribution on the backscattering ratio in the remote sensing of seawater," Appl. Opt. 41, 7092-7101 (2002). [CrossRef] [PubMed]
  5. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003). [CrossRef]
  6. M. I. Mishchenko and L. D. Travis, "Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation," Appl. Opt. 33, 7206-7225 (1994). [CrossRef] [PubMed]
  7. D. Stramski, A. Bricaud, and A. Morel, "Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community," Appl. Opt. 40, 2929-2945 (2001). [CrossRef]
  8. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004). [CrossRef]
  9. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC, 1995).
  10. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge U. Press, 1994). [CrossRef]
  11. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  12. S. W. Effler and M. G. Perkins, "An optics model for Onondaga Lake," Lake Reserv. Manage. 12, 115-125 (1996). [CrossRef]
  13. S. W. Effler, Limnological and Engineering Analysis of a Polluted Urban Lake: Prelude to Environmental Management of Onondaga Lake, New York (Springer, 1996). [CrossRef]
  14. M. Jonasz, "Nonsphericity of suspended marine particles and its influence on light scattering," Limnol. Oceanogr. 32, 1059-1065 (1987). [CrossRef]
  15. F. Peng and S. W. Effler, "Suspended minerogenic particles in a reservoir: light-scattering features from individual particle analysis," Limnol. Oceanogr. 52, 204-216 (2007). [CrossRef]
  16. S. W. Effler and C. F. Carter, "Spatial variability in selected physical characteristics and processes in Cross Lake, New York," Water Resour. Bull. 23, 243-250 (1987). [CrossRef]
  17. S. W. Effler, D. A. Matthews, C. M. Brooks-Matthews, M. Perkins, C. A. Siegfried, and J. M. Hassett, "Water quality impacts and indicators of metabolic activity of the zebra mussel invasion of the Seneca River," J. Am. Water Resour. Assoc. 40, 737-754 (2004). [CrossRef]
  18. L. S. Clesceri, A. E. Greenberg, and A. D. Eaton, eds., Standard Methods for the Examination of Water and Wastewater (American Public Health Association, American Water Works Association, Water Environment Federation, 1998).
  19. T. R. Parsons, Y. Maita, and C. M. Lalli, A Manual of Chemical and Biological Methods for Seawater Analysis (Pergamon, 1984).
  20. A.-L. Barillé-Boyer, L. Barille, H. Masse, D. Razet, and M. Heral, "Correction for particulate organic matter as estimated by loss on ignition in estuarine ecosystems," Estuarine Coastal Shelf Sci. 58, 147-153 (2003). [CrossRef]
  21. WET Labs, "Spectral absorption and attenuation meter ac-s: user's guide" (Philomath, Oregon, USA, 2006).
  22. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, "Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity," Appl. Opt. 36, 6035-6046 (1997). [CrossRef] [PubMed]
  23. J. Piskozub, D. Stramski, E. Terrill, and W. K. Melville, "Influence of forward and multiple light scatter on the measurement of beam attenuation in highly scattering marine environments," Appl. Opt. 43, 4723-4731 (2004). [CrossRef] [PubMed]
  24. WET Labs, "Scattering meter BB9: user's guide" (Philomath, Oregon, USA, 2007).
  25. E. Boss and W. S. Pegau, "Relationship of light scattering at an angle in the backward direction to the backscattering coefficient," Appl. Opt. 40, 5503-5507 (2001). [CrossRef]
  26. F. Peng, D. L. Johnson, and S. W. Effler, "Suspensoids in New York city's drinking water reservoirs: Turbidity apportionment," J. Am. Water Resour. Assoc. 38, 1453-1465 (2002). [CrossRef]
  27. F. Peng and S. W. Effler, "Inorganic tripton in the Finger Lakes of New York: importance to optical characteristics," Hydrobiologia 543, 259-277 (2005). [CrossRef]
  28. D. L. Johnson, J. Jiao, S. G. DosSantos, and S. W. Effler, "Individual particle analysis of suspended materials in Onondaga Lake, New York," Environ. Sci. Technol. 25, 736-744 (1991). [CrossRef]
  29. A. D. Weidemann, T. T. Bannister, S. W. Effler, and D. L. Johnson, "Particulate and optical properties during CaCO3 precipitation in Otisco Lake," Limnol. Oceanogr. 30, 1078-1083 (1985). [CrossRef]
  30. J. C. Russ, The Image Processing Handbook (CRC, 1998).
  31. Y. C. Agrawal and H. C. Pottsmith, "Instruments for particle size and settling velocity observations in sediment transport," Mar. Geol. 168, 89-114 (2000). [CrossRef]
  32. D. Risovi?, "Two-component model of sea particle size distribution," Deep-Sea Res. , Part I 40, 1459-1473, doi:doi: (1993). [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  34. P. F. Kerr and A. F. Rogers, Optical Mineralogy (McGraw-Hill, 1977).
  35. S. B. Wo?niak and D. Stramski, "Modeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms," Appl. Opt. 43, 3489-3503 (2004). [CrossRef] [PubMed]
  36. T. D. Proctor and G. W. Harris, "The turbidity of suspensions of irregular quartz particles," J. Aerosol Sci. 5, 81-90 (1974). [CrossRef]
  37. H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998). [CrossRef]
  38. A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. , [Oceans] 106, 7163-7180 (2001). [CrossRef]
  39. H. Loisel, X. Mériaux, J.-F. Berthon, and A. Poteau, "Investigation of the optical backscattering to scattering ratio of marine particles in relation to their biogeochemical composition in the eastern English Channel and southern North Sea," Limnol. Oceanogr. 52, 739-752 (2007). [CrossRef]
  40. S. W. Effler, D. A. Matthews, M. Perkins, D. L. Johnson, F. Peng, M. R. Penn, and M. T. Auer, "Patterns and impacts of inorganic tripton in Cayuga Lake," Hydrobiologia 482, 137-150, doi: (2002). [CrossRef]
  41. S. W. Effler, C. M. Brooks, M. G. Perkins, N. K. Ohrazda, D. A. Matthews, D. L. Johnson, M. T. Auer, J. A. Bloomfield, and S. O. Quinn, "The effect of terrigenous inputs on spatial patterns of water quality indicators in South Lake, Lake Champlain," J. Great Lakes Res. 26, 366-383 (2000). [CrossRef]
  42. S. W. Effler, M. G. Perkins, H. Greer, and D. L. Johnson, "Effect of 'whiting' on optical properties and turbidity in Owasco Lake, New York," Water Resour. Bull. 23, 189-196 (1987). [CrossRef]
  43. C. T. Driscoll, S. W. Effler, and S. M. Doerr, "Changes in inorganic carbon chemistry and deposition of Onondaga Lake, New York," Environ. Sci. Technol. 28, 1211-1218 (1994). [CrossRef] [PubMed]
  44. S. P. Madon, D. W. Schneider, J. A. Stoeckel, and R. E. Sparks, "Effects of inorganic sediment and food concentrations on energetic processes of the zebra mussel, Dreissena polymorpha: implications for growth in turbid rivers," Can. J. Fish. Aquat. Sci. 55, 401-413 (1998). [CrossRef]
  45. S. W. Effler, R. K. Gelda, M. G. Perkins, and D. M. O'Donnell, "Modeling light attenuation, Secchi disk, and effects of tripton in Senaca River, New York, USA," J. Am. Water Resour. Assoc. 41, 971-984 (2005).
  46. C. Yin and D. L. Johnson, "An individual particle analysis and budget study of Onondaga Lake sediments," Limnol. Oceanogr. 29, 1193-1201 (1984). [CrossRef]
  47. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. , [Oceans] 106, 14129-14142 (2001). [CrossRef]
  48. A. C. Holland and G. Gagne, "The scattering of polarized light by polydisperse systems of irregular particles," Appl. Opt. 9, 1113-1121 (1970). [CrossRef] [PubMed]
  49. A. Mugnai and W. Wiscombe, "Scattering from nonspherical Chebyshev particles. 3. variability in angular scattering patterns," Appl. Opt. 28, 3061-3073 (1989). [CrossRef] [PubMed]
  50. H. R. Gordon and T. Du, "Light scattering by nonspherical particles: application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001). [CrossRef]
  51. H. Volten, J. F. de Haan, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, "Laboratory measurements of angular distributions of light scattered by phytoplankton and silt," Limnol. Oceanogr. 43, 1180-1197 (1998). [CrossRef]
  52. H. R. Gordon and O. B. Brown, "A theoretical model of light scattering by Sargasso Sea particulates," Limnol. Oceanogr. 17, 826-832 (1972). [CrossRef]
  53. D. Stramski and S. B. Wo?niak, "On the role of colloidal particles in light scattering in the ocean," Limnol. Oceanogr. 50, 1581-1591 (2005). [CrossRef]
  54. C. E. Lambert, C. Jehanno, N. Silverberg, J. C. Brun-Cottan, and R. Chesselet, "Lognormal distributions of suspended particles in the open ocean," J. Mar. Res. 39, 77-98 (1981).
  55. D. Risovi? and M. Martinis, "A comparative analysis of sea-particle-size distribution models," Fiz. B 4, 111-120 (1995).
  56. H. Bader, "The hyperbolic distribution of particle sizes," J. Geophys. Res. 75, 2822-2830 (1970). [CrossRef]
  57. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, "Use of optical scattering to discriminate particle types in coastal waters," Appl. Opt. 44, 1667-1680 (2005). [CrossRef] [PubMed]
  58. F. P. Chavez, K. R. Buck, R. R. Bidigare, D. M. Karl, D. Hebel, M. Latasa, M. E. Ondrusek, L. Campbell, and J. Newton, "On the chlorophyll a retention properties of glass-fiber GF/F filters," Limnol. Oceanogr. 40, 428-433 (1995). [CrossRef]
  59. R. W. Sheldon, "Size separation of marine seston by membrane and glass-fiber filters," Limnol. Oceanogr. 17, 494-498 (1972). [CrossRef]
  60. R. H. Stavn and T. R. Keen, "Suspended minerogenic particle distributions in high-energy coastal environments: optical implications," J. Geophys. Res. 109, C05005, doi: (2004). [CrossRef]
  61. A. L. Whitmire, E. Boss, T. J. Cowles, and W. S. Pegau, "Spectral variability of the particulate backscattering ratio," Opt. Express 15, 7019-7031 (2007). [CrossRef] [PubMed]
  62. X. Zhang, M. Lewis, M. Lee, B. Johnson, and G. Korotaev, "The volume scattering function of natural bubble populations," Limnol. Oceanogr. 47, 1273-1282 (2002). [CrossRef]
  63. D. M. Lavoie, "Computerized oceanic particle characterization using heavy metal staining, SEM, EDXS and image analysis," Deep-Sea Res. , Part A 39, 1655-1668 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited