OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 10 — Oct. 31, 2007

Transport- and diffusion-based optical tomography in small domains: a comparative study

Kui Ren, Guillaume Bal, and Andreas H. Hielscher  »View Author Affiliations


Applied Optics, Vol. 46, Issue 27, pp. 6669-6679 (2007)
http://dx.doi.org/10.1364/AO.46.006669


View Full Text Article

Enhanced HTML    Acrobat PDF (1177 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compare reconstructions based on the radiative transport and diffusion equations in optical tomography for media of small sizes. While it is well known that the diffusion approximation is less accurate to describe light propagation in such media, it has not yet been shown how this inaccuracy affects the images obtained with model-based iterative image reconstructions schemes. Using synthetic nondifferential data we calculate the error in the reconstructed images of optical properties as functions of source modulation frequency, noise level in measurement, and diffusion extrapolation length. We observe that the differences between diffusion and transport reconstructions are large when high modulation frequencies and noise-free data are used in the reconstructions. When the noise in data reaches a certain level, approximately 12% in our simulations, the differences between diffusion- and transport-based reconstructions become almost indistinguishable. Given that state-of-the-art optical imaging systems operate at much lower noise levels, the benefits of transport-based reconstructions of small imaging domains can be realized with most of the currently available systems. However, transport-based reconstructions are considerably slower than diffusion-based reconstructions.

© 2007 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: May 8, 2007
Manuscript Accepted: July 3, 2007
Published: September 11, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Kui Ren, Guillaume Bal, and Andreas H. Hielscher, "Transport- and diffusion-based optical tomography in small domains: a comparative study," Appl. Opt. 46, 6669-6679 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-27-6669


Sort:  Year  |  Journal  |  Reset  

References

  1. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  2. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and Q. Zhang, "Imaging the body with diffuse optical tomography," IEEE Signal Process Mag. 18, 57-75 (2001). [CrossRef]
  3. B. Chance, R. R. Alfano, B. J. Tromberg, and A. Katzir, eds., in Optical Tomography and Spectroscopy of Tissue (SPIE, 2003), Vol. V.
  4. E. M. C. Hillman, J. C. Hebden, M. Schweiger, H. Dehghani, F. E. W. Schmidt, D. T. Delpy, and S. R. Arridge, "Time resolved optical tomography of the human forearm," Phys. Med. Biol. 46, 1117-1130 (2001). [CrossRef] [PubMed]
  5. H. Jiang, K. D. Paulsen, U. L. Österberg, B. W. Pogue, and M. S. Patterson, "Simultaneous reconstruction of optical absorption and scattering maps turbid media from near-infrared frequency-domain data," Opt. Lett. 20, 2128-2130 (1995). [CrossRef] [PubMed]
  6. A. Li, E. Miller, M. Kilmer, T. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. Moore, D. Kopans, and D. Boas, "Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-5190 (2003). [CrossRef] [PubMed]
  7. V. A. Markel and J. C. Schotland, "Inverse problem in optical diffusion tomography. 1. Fourier-Laplace inverse formula," J. Opt. Soc. Am. A 18, 1336-1347 (2001). [CrossRef]
  8. V. A. Markel and J. C. Schotland, "Inverse problem in optical diffusion tomography. 2. Role of boundary conditions," J. Opt. Soc. Am. A 19, 558-566 (2002). [CrossRef]
  9. G. J. Müller, ed., Medical Optical Tomography: Functional Imaging and Optical Technologies (SPIE, 1993), Vol. IS11.
  10. B. W. Pogue, M. S. Patterson, H. Jiang, and K. D. Paulsen, "Initial assessment of a simple system for frequency domain diffuse optical tomography," Phys. Med. Biol. 40, 1709-1729 (1995). [CrossRef] [PubMed]
  11. R. Roy and E. M. Sevick-Muraca, "Truncated Newton's optimization scheme for absorption and fluorescence optical tomography (part 1 and part 2)," Opt. Express 4, 353-382 (1999). [CrossRef] [PubMed]
  12. M. Schweiger, S. Arridge, and D. Delpy, "Application of the finite-element method for the forward and inverse models in optical tomography," J. Math. Imaging Vision 3, 263-283 (1993). [CrossRef]
  13. A. G. Yodh and B. Chance, "Spectroscopy and imaging with diffusing light," Phys. Today 48, 34-40 (1995). [CrossRef]
  14. D. A. Benaron, S. R. Hintz, A. Villringer, D. Boas, A. Kleinschmidt, J. Frahm, C. Hirth, H. Obrig, J. C. van Houten, E. L. Kermit, W. F. Cheong, and D. K. Stevenson, "Noninvasive functional imaging of human brain using light," J. Cereb. Blood Flow Metab. 20, 469-477 (2000). [CrossRef] [PubMed]
  15. D. A. Boas, K. Chen, D. Grebert, and M. A. Franceschini, "Improving the diffuse optical imaging spatial resolution of the cerebral hemodynamic response to brain activation in humans," Opt. Lett. 29, 1506-1508 (2004). [CrossRef] [PubMed]
  16. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, "Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-266 (2001). [PubMed]
  17. B. W. Pogue, M. Testorf, T. O. McBride, U. L. Österberg, and K. D. Paulsen, "Instrumentation and design of frequency-domain diffuse optical imager for breast cancer detection," Opt. Express 1, 391-403 (1997). [CrossRef] [PubMed]
  18. P. Taroni, G. Danesini, A. Torricelli, A. Pifferi, L. Spinelli, and R. Cubeddu, "Clinical trial of time-resolved scanning optical mammography at 4 wavelengths between 683 and 975 nm," J. Biomed. Opt. 9, 464-473 (2004). [CrossRef] [PubMed]
  19. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. Butler, "Noninvasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000). [CrossRef] [PubMed]
  20. A. H. Hielscher, A. D. Klose, A. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, "Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-1163 (2004). [CrossRef] [PubMed]
  21. A. D. Klose, A. H. Hielscher, K. M. Hanson, and J. Beuthan, "Three-dimensional optical tomography of a finger joint model for diagnostic of rheumatoid arthritis," Proc. SPIE 3566, 151-160 (1998). [CrossRef]
  22. U. Netz, J. Beuthan, H. J. Capius, H. C. Koch, A. D. Klose, and A. H. Hielscher, "Imaging of rheumatoid arthritis in finger joints by sagittal optical tomography," Medical Laser Application 16, 306-310 (2001). [CrossRef]
  23. V. Prapavat, W. Runge, J. Mans, A. Krause, J. Beuthan, and G. Müller, "Development of a finger joint phantom for the optical simulation of early stages of rheumatoid arthritis," Biomed. Tech. 42, 319-326 (1997). [CrossRef]
  24. Y. Xu, N. Iftimia, H. Jiang, L. Key, and M. Bolster, "Three-dimensional diffuse optical tomography of bones and joints," J. Biomed. Opt. 7, 88-92 (2002). [CrossRef] [PubMed]
  25. G. Bal and K. Ren, "Generalized diffusion model in optical tomography with clear layers," J. Opt. Soc. Am. A 20, 2355-2364 (2003). [CrossRef]
  26. G. Bal, "Particle transport through scattering regions with clear layers and inclusions," J. Comp. Physiol. 180, 659-685 (2002).
  27. G. Bal and Y. Maday, "Coupling of transport and diffusion models in linear transport theory," Math. Modell. Numer. Anal. 36, 69-86 (2002). [CrossRef]
  28. H. Dehghani, S. R. Arridge, M. Schweiger, and D. T. Delpy, "Optical tomography in the presence of void regions," J. Opt. Soc. Am. A 17, 1659-1670 (2000). [CrossRef]
  29. G. S. Abdoulaev and A. H. Hielscher, "Three-dimensional optical tomography with the equation of radiative transfer," J. Electron. Imaging 12, 594-601 (2003). [CrossRef]
  30. W. Cai, M. Xu, and R. R. Alfano, "Three-dimensional radiative transfer tomography for turbid media," IEEE J. Sel. Top. Quantum Electron. 9, 189-198 (2003). [CrossRef]
  31. O. Dorn, "A transport-backtransport method for optical tomography," Inverse Probl. Eng. 14, 1107-1130 (1998). [CrossRef]
  32. A. D. Klose and A. H. Hielscher, "Optical tomography using the time-independent equation of radiative transfer. 2. inverse model," J. Quant. Spectrosc. Radiat. Transf. 72, 715-202 (2002). [CrossRef]
  33. K. Ren, G. Bal, and A. H. Hielscher, "Frequency domain optical tomography based on the equation of radiative transfer," SIAM J. Sci. Comput. (USA) 28, 1463-1489 (2006). [CrossRef]
  34. A. Y. Bluestone, M. Stewart, B. Lei, I. S. Kass, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher, "Three-dimensional optical tomographic brain imaging in small animals, part 1: Hypercapnia," J. Biomed. Opt. 9, 1046-1062 (2004). [CrossRef] [PubMed]
  35. E. E. Graves, R. Weissleder, and V. Ntziachristos, "Fluorescence molecular imaging of small animal tumor models," Current Molecular Medicine 4, 419-430 (2004). [CrossRef] [PubMed]
  36. A. H. Hielscher, "Optical tomographic imaging of small animals," Curr. Opi. Biotechnol. 16, 79-88 (2005). [CrossRef]
  37. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, "Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissue," Phys. Med. Biol. 43, 1285-1302 (1998). [CrossRef] [PubMed]
  38. A. D. Kim and J. B. Keller, "Light propagation in biological tissue," J. Opt. Soc. Am. A 20, 92-98 (2003). [CrossRef]
  39. K. Ren, G. S. Abdoulaev, G. Bal, and Andreas H. Hielscher, "Algorithm for solving the equation of radiative transfer in the frequency domain," Opt. Lett. 29, 578-580 (2004). [CrossRef] [PubMed]
  40. L. G. Henvey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 90, 70-83 (1941). [CrossRef]
  41. A. J. Welch and M. J. C. Van-Gemert, Optical-Thermal Response of Laser Irradiated Tissue (Plenum, 1995).
  42. A. Kienle, F. K. Forster, and R. Hibst, "Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance," Opt. Lett. 26, 1571-1573 (2001). [CrossRef]
  43. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology (Springer-Verlag, 1993), Vol. 6. [CrossRef]
  44. R. Elaloufi, R. Carminati, and J. Greffet, "Time-dependent transport through scattering media: from radiative transfer to diffusion," J. Opt. A , Pure Appl. Opt. 4, S103-S108 (2002). [CrossRef]
  45. S. Chandrasekhar, Radiative Transfer (Dover, 1960).
  46. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M. S. McAdams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994). [CrossRef]
  47. M. Francocur, R. Vaillon, and D. R. Rousse, "Theoretical analysis of frequency and time-domain methods for optical characterization of absorbing and scattering media," J. Quant. Spectrosc. Radiat. Transf. 93, 139-150 (2005). [CrossRef]
  48. R. Eymard, T. Gallouet, and R. Herbin, "Finite volume methods," in Handbook of Numerical Analysis VII, P. G. Ciarlet and J. L. Lions, ed. (North-Holland, 2000). [CrossRef]
  49. E. E. Lewis and W. F. Miller, Computational Methods of Neutron Transport (American Nuclear Society, 1993).
  50. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer-Verlag, 1998).
  51. G. Bal, "Transport through diffusive and nondiffusive regions, embedded objects, and clear layers," SIAM J. Appl. Math. 62, 1677-1697 (2002). [CrossRef]
  52. S. R. Arridge, H. Dehghani, M. Schweiger, and E. Okada, "The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions," Med. Phys. 27, 252-264 (2000). [CrossRef] [PubMed]
  53. M. Firbank, S. R. Arridge, M. Schweiger, and D. T. Delpy, "An investigation of light transport through scattering bodies with nonscattering regions," Phys. Med. Biol. 41, 767-783 (1996). [CrossRef] [PubMed]
  54. C. H. Schmitz, M. Löcker, J. M. Lasker, A. H. Hielscher, and R. L. Barbour, "Instrumentation for fast functional optical tomography," Rev. Sci. Instrum. 73, 429-439 (2002). [CrossRef]
  55. H. Xu, B. W. Pogue, R. Springett, and H. Dehghani, "Spectral derivative based image reconstruction provides inherent insensitivity to coupling and geometric errors," Opt. Lett. 30, 2912-2914 (2005). [CrossRef] [PubMed]
  56. Y. Pei, H. L. Graber, and R. L. Barbour, "Influence of systematic errors in reference states on image quality and on stability of derived information for DC optical imaging," Appl. Opt. 40, 5755-5769 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited