OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 2, Iss. 11 — Nov. 26, 2007

Fluorescence lifetime imaging by using time-gated data acquisition

Vadim Y. Soloviev, Khadija B. Tahir, James McGinty, Dan S. Elson, Mark A. A. Neil, Paul M. W. French, and Simon R. Arridge  »View Author Affiliations

Applied Optics, Vol. 46, Issue 30, pp. 7384-7391 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1009 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The use of the time gating technique for lifetime reconstruction in the Fourier domain is a novel technique. Time gating provides sufficient data points in the time domain for reliable application of the Fourier transform, which is essential for the time deconvolution of the system of the integral equations employed in the reconstruction. The Fourier domain telegraph equation is employed to model the light transport, which allows a sufficiently broad interval of frequencies to be covered. Reconstructed images contain enough information needed for recovering the lifetime distribution in a sample for any given frequency within the megahertz–gigahertz band. The use of this technique is essential for recovering time-dependent information in fluorescence imaging. This technique was applied in reconstruction of the lifetime distribution of four tubes filled with Rhodamine 6G embedded inside a highly scattering slab. Relatively accurate fluorescence lifetime reconstruction demonstrates the effectiveness and the potential of the proposed technique.

© 2007 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: February 14, 2007
Revised Manuscript: July 4, 2007
Manuscript Accepted: July 23, 2007
Published: October 10, 2007

Virtual Issues
Vol. 2, Iss. 11 Virtual Journal for Biomedical Optics

Vadim Y. Soloviev, Khadija B. Tahir, James McGinty, Dan S. Elson, Mark A. A. Neil, Paul M. W. French, and Simon R. Arridge, "Fluorescence lifetime imaging by using time-gated data acquisition," Appl. Opt. 46, 7384-7391 (2007)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Shives, Y. Xu, and H. Jiang, "Fluorescence lifetime tomography in turbid media based on an oxygen-sensitive dye," Opt. Express 10, 1557-1562 (2002). [PubMed]
  2. V. Y. Soloviev, D. F. Wilson, and S. A. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the inverse problem and experimental image reconstruction," Appl. Opt. 43, 564-574 (2004). [CrossRef] [PubMed]
  3. S. V. Apreleva, D. F. Wilson, and S. A. Vinogradov, "Tomographic imaging of oxygen by phosphorescence lifetime," Appl. Opt. 45, 8547-8559 (2006). [CrossRef] [PubMed]
  4. S. Lam, F. Lesage, and X. Intes, "Time domain fluorescence diffuse optical tomography: analytical expressions," Opt. Express 13, 2263-2275 (2005). [CrossRef] [PubMed]
  5. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, "Fluorescence-lifetime-based tomography for turbid media," Opt. Lett. 30, 3357-3349 (2005). [CrossRef]
  6. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, "Time resolved fluorescence tomography of turbid media based on lifetime contrast," Opt. Express 25, 12255-12270 (2006). [CrossRef]
  7. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  8. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  9. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, "Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques," Photochem. Photobiol. 66, 55-64 (1997). [CrossRef] [PubMed]
  10. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, and D. Ben-Amotz, "Frequency domain modeling of reradiation in highly scattering media," Appl. Opt. 36, 2252-2259 (1997). [CrossRef] [PubMed]
  11. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  12. A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, "Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection," Med. Phys. 33, 1299-1310 (2006). [CrossRef] [PubMed]
  13. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vladas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, and P. M. W. French, "Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles," Appl. Opt. 42, 2995-3004 (2003). [CrossRef] [PubMed]
  14. D. Elson, J. Requejo-Isidro, I. Munro, F. Reavell, J. Seigel, K. Suhling, P. Tadrous, R. Benninger, P. Lanigan, J. McGinty, C. Talbot, B. Treanor, S. Webb, A. Sandison, A. Wallace, D. Davis, J. Lever, M. Neil, D. Phillips, G. Stamp, and P. French, "Time-domain fluorescence lifetime imaging applied to biological tissue," Photochem. Photobiol. Sci. 3, 795-801 (2004). [CrossRef] [PubMed]
  15. V. Y. Soloviev, "Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging," Med. Phys. 33, 4176-4183 (2006). [CrossRef] [PubMed]
  16. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography," Opt. Express 14, 7109-7124 (2006). [CrossRef] [PubMed]
  17. V. Soloviev, D. Wilson, and S. Vinogradov, "Phosphorescence lifetime imaging in turbid media: the forward problem," Appl. Opt. 42, 113-123 (2003). [CrossRef] [PubMed]
  18. D. J. Durian and J. Rundick, "Photon migration at short times and distances and in case of strong absorption," J. Opt. Soc. Am. 14, 235-245 (1997). [CrossRef]
  19. J. Ripoll, R. B. Schultz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901 (2003). [CrossRef] [PubMed]
  20. R. B. Schulz, J. Peter, W. Semmler, C. D'Andrea, G. Valentini, and R. Cubeddu, "Comparison of noncontact and fiber-based fluorescence-mediated tomography," Opt. Lett. 31, 769-771 (2006). [CrossRef] [PubMed]
  21. V. V. Sobolev, A Treatise on Radiative Transfer (Van Nostrand, 1963).
  22. S. Arridge, "Optical tomography in medical imaging," Inverse Probl. Eng. 15, R41-R93 (1999). [CrossRef]
  23. V. Y. Soloviev and L. V. Krasnosselskaia, "Consideration of a spread-out source in problems of near-infrared optical tomography," Appl. Opt. 45, 4765-4775 (2006). [CrossRef] [PubMed]
  24. V. Y. Soloviev and L. V. Krasnosselskaia, "Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography," Appl. Opt. 45, 2828-2837 (2006). [CrossRef] [PubMed]
  25. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, 2000).
  26. M. Firbank, "The design, calibration, and usage of a solid scattering and absorbing phantom for near-infrared spectroscopy," Ph.D. dissertation (University College, London, 1994).
  27. K. Tahir and C. Dainty, "Experimental measurements of light scattering from samples with specified optical properties," J. Opt. A , Pure Appl. Opt. 7, 207-214 (2005). [CrossRef]
  28. F. Bohren, "Recurrence relations for the Mie scattering coefficients," J. Opt. Soc. Am. A 4, 612-613 (1987). [CrossRef]
  29. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil, and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy," J. Phys. D 37, 3296-3303 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited