OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Optical anisotropy of the human cornea determined with a polarizing microscope

Richard A. Bone and Grenville Draper  »View Author Affiliations


Applied Optics, Vol. 46, Issue 34, pp. 8351-8357 (2007)
http://dx.doi.org/10.1364/AO.46.008351


View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have investigated the optical anisotropy of the human cornea using a polarizing microscope normally used for optical mineralogy studies. The central part of the cornea was removed from 14 eyes (seven donors). With the sample placed on the microscope stage, we consistently observed hyperbolic isogyres characteristic of a negative biaxial material. The angle between the optic axes, generally similar in both eyes, ranged from 12° to 40° ( mean ± SD = 31 ° ± 8 ° ) . The optic axial plane always inclined downward in the nasal direction at 1°–45° below the horizontal ( mean ± SD = 22 ± 13 ° ) . The retardance produced by the corneas was estimated to be less than 200   nm . In conclusion, the human cornea possesses the anisotropy of a negative biaxial material. Both the angle between the optic axes and the retardance were fairly constant among the majority of samples, suggestive of uniformity in corneal structure.

© 2007 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: July 9, 2007
Revised Manuscript: October 19, 2007
Manuscript Accepted: October 24, 2007
Published: November 30, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Richard A. Bone and Grenville Draper, "Optical anisotropy of the human cornea determined with a polarizing microscope," Appl. Opt. 46, 8351-8357 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-34-8351


Sort:  Year  |  Journal  |  Reset  

References

  1. J. M. Bueno and F. Vargas-Martin, "Measurements of the corneal birefringence with a liquid-crystal imaging polariscope," Appl. Opt. 41, 116-124 (2002). [CrossRef] [PubMed]
  2. D. J. Donohue, B. J. Stoyanov, R. L. McCally, and R. A. Farrell, "Numerical modeling of the cornea's lamellar structure and birefringence properties," J. Opt. Soc. Am. A 12, 1425-1438 (1995). [CrossRef]
  3. A. Stanworth and E. J. Naylor, "The polarization optics of the isolated cornea," Br. J. Ophthalmol. 34, 201-211 (1950). [CrossRef] [PubMed]
  4. A. Stanworth and E. J. Naylor, "Polarized light studies of the cornea," J. Exp. Biol. 30, 160-169 (1953).
  5. L. J. Bour and N. J. Lopes Cardozo, "On the birefringence of the living human eye," Vision Res. 21, 1413-1421 (1981). [CrossRef] [PubMed]
  6. G. J. Van Blokland and S. C. Verhelst, "Corneal polarization in the living human eye explained with a biaxial model," J. Opt. Soc. Am. A 4, 82-90 (1987). [CrossRef] [PubMed]
  7. L. Cavuoto, X.-R. Huang, and R. Knighton, "Corneal birefringence mapped by scanning laser polarimetry," Invest. Ophthalmol. Visual Sci. 48, ARVO E-Abstract 3532 (2007).
  8. D. Donohue, B. Stoyanov, R. McCally, and R. Farrell, "A numerical test of the normal incidence uniaxial model of corneal birefringence," Cornea 15, 278-285 (1996). [CrossRef] [PubMed]
  9. J. Lekner, "Isogyre formation by isotropic refracting bodies," Ophthalmic Physiol. Opt. 15, 69-72 (1995). [CrossRef] [PubMed]
  10. B. Pierscionek, "Explanation of isogyre formation by the eye lens,"Ophthalmic Physiol. Opt. 13, 91-94 (1993). [CrossRef] [PubMed]
  11. B. Pierscionek and D. Chan, "Mathematical decription of isogyre formation in refracting structures," Ophthalmic Physiol. Opt. 13, 212-215 (1993). [CrossRef]
  12. B. Pierscionek and R. Reytomas, "Light intensity distributions in refracting structures placed between crossed polarizers," Exp. Eye Res. 62, 573-580 (1996). [CrossRef] [PubMed]
  13. V. Louis-Dorr, K. Naoun, P. Allé, A.-M. Benoit, and A. Raspiller, "Linear dichroism of the cornea," Appl. Opt. 43, 1515-1521 (2004). [CrossRef] [PubMed]
  14. J. Bueno and J. Jaronski, "Spatially resolved polarization properties of in vitro corneas," Ophthalmic Physiol. Opt. 21, 384-392 (2001). [CrossRef] [PubMed]
  15. H. Anamula, A. A. Nezhuvingal, Y. Li, and B. D. Cameron, "Development of a noninvasive corneal birefringence-compensated glucose-sensing polarimeter," in Advanced Biomedical and Clinical Diagnostic Systems, T. Vo-Dinh, W. S. Grundfest, D. A. Benaron, and G. E. Cohn, eds., Proc. SPIE 4958, 303-312 (2003).
  16. Q. Wan, G. L. Cote, and J. B. Dixon, "Dual-wavelength polarimetry for monitoring glucose in the presence of varying birefringence," J. Biomed. Opt. 10, 024029 (2005). [CrossRef] [PubMed]
  17. N. T. Choplin, D. C. Lundy, and A. W. Drcher, "Differentiating patients with glaucoma from glaucoma suspects and normal subjects by nerve fiber layer assessment with scanning laser polarimetry," Opthalmology (Philadelphia) 105, 2068-2076 (1998).
  18. D. S. Greenfield, R. W. Knighton, and X.-R. Huang, "Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry," Am. J. Ophthalmol. 129, 715-722 (2000). [CrossRef] [PubMed]
  19. R. N. Weinreb, S. Shakiba, and L. Zangwill, "Scanning laser polarimetry to measure the nerve fiber layer of normal and glaucomatous eyes," Am. J. Ophthalmol. 119, 627-636 (1995). [PubMed]
  20. R. W. Knighton and X.-R. Huang, "Linear birefringence of the central human cornea," Invest. Ophthalmol. Visual Sci. 43, 82-86 (2002).
  21. W. Nesse, Introduction to Optical Mineralogy (Oxford Press, 2003).
  22. G. Sen, Earth's Materials--Minerals and Rocks (Prentice Hall, 2001).
  23. A. Tobi, "A chart for measurement of optic axial angles," Am. Mineral. 41, 516-519 (1956).
  24. J. M. Bueno and M. C. W. Campbell, "Polarization properties of the in vitro old human crystalline lens," Ophthalmic Physiol. Opt. 23, 109-118 (2003). [CrossRef] [PubMed]
  25. R. Bone, "The role of the macular pigment in the detection of polarized light," Vision Res. 20, 213-220 (1980). [CrossRef] [PubMed]
  26. J. Bueno, "Measurement of parameters of polarization in the living human eye using imaging polarimetry," Vision Res. 40, 3791-3799 (2000). [CrossRef] [PubMed]
  27. J. Bueno, "Polarimetry in the human eye using an imaging linear polariscope," J. Opt. A , Pure Appl. Opt. 4, 553-561 (2002). [CrossRef]
  28. J. Bueno, E. Berrio, and P. Artal, "Abbero-polariscope for the human eye," Opt. Lett. 28, 1209-1211 (2003). [CrossRef] [PubMed]
  29. R. Hemenger, "Birefringence of a medium of tenuous parallel cylinders," Appl. Opt. 28, 4030-4034 (1989). [CrossRef] [PubMed]
  30. R. Farrell, D. Rouseff, and R. McCally, "Propagation of polarized light through two- and three-layer anisotropic stacks," J. Opt. Soc. Am. A 22, 1981-1992 (2005). [CrossRef]
  31. K. Meek, T. Blamires, G. Elliott, T. Gyi, and C. Nave, "The organisation of collagen fibrils in the human corneal stroma: a synchroton x-ray diffraction study," Curr. Eye Res. 6, 841-846 (1987). [CrossRef] [PubMed]
  32. A. Daxer and P. Fratzl, "Collagen fibril orientation in the human corneal stroma and its implications for keratoconus," Invest. Ophthalmol. Visual Sci. 38, 121-129 (1997).
  33. E. Götzinger, M. Pircher, I. Dejaco-Ruhswurm, S. Kaminski, C. Skorpik, and C. Hitzenberger, "Imaging of birefringent properties of keratoconus corneas by polarization-sensitive optical coherence tomography," Invest. Ophthalmol. Sci. 48, 3551-3558 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited