OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Temperature distribution in dental tissue after interaction with femtosecond laser pulses

Pavlina Pike, Christian Parigger, Robert Splinter, and Peter Lockhart  »View Author Affiliations

Applied Optics, Vol. 46, Issue 34, pp. 8374-8378 (2007)

View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Algebraic and numerical solutions are presented of the temperature rise in dental tissue due to interaction with ultrashort optical radiation. Results of the studies with femtosecond laser pulses show agreement between theory and experiment. A temperature rise of typically 5 K is found for a 40 millisecond train of 7   nJ , 70 fs laser pulses at a repetition rate of 80   MHz . The peak irradiance in our experimental studies was limited to 3 × 10 6 W / cm 2 . Applications include photoacoustic imaging and tomography of dental tissue.

© 2007 Optical Society of America

OCIS Codes
(170.1850) Medical optics and biotechnology : Dentistry
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5120) Medical optics and biotechnology : Photoacoustic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: February 27, 2007
Revised Manuscript: July 20, 2007
Manuscript Accepted: August 19, 2007
Published: November 30, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Pavlina Pike, Christian Parigger, Robert Splinter, and Peter Lockhart, "Temperature distribution in dental tissue after interaction with femtosecond laser pulses," Appl. Opt. 46, 8374-8378 (2007)

Sort:  Year  |  Journal  |  Reset  


  1. C. G. A. Hoelen, F. F. de Mul, R. Pongers, and A. Dekker, "Three-dimensional photoacoustic imaging of blood vessels in tissue," Opt. Lett. 23, 648-650 (1998). [CrossRef]
  2. C. G. A. Hoelen, R. G. M. Kolkman, M. Letteboer, R. Berendsen, and F. F. M. de Mul, "Photoacoustic tissue scanning," Proc. SPIE 3597, 336-343 (1999). [CrossRef]
  3. A. A. Oraevsky, V. A. Andreev, A. A. Karabutov, D. R. Fleming, Z. Gatalica, H. Singh, and R. O. Esenaliev, "Laser opto-acoustic Imaging of the breast: detection of cancer angiogenesis," Proc. SPIE 3597, 352-363 (1999). [CrossRef]
  4. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. Wang, "Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain," Nature Biotechnol. 21, 803-806 (2003). [CrossRef]
  5. P. C. Beard and T. N. Mills, "Characterization of postmortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461, and 532 nm," Phys. Med. Biol. 42, 177-198 (1997). [CrossRef] [PubMed]
  6. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996). [CrossRef]
  7. A. M. Rubenchik, L. B. Da Silva, M. D. Feit, S. M. Lane, R. A. London, M. D. Perry, B. C. Stuart, and J. Neev, "Dental tissue processing with ultrashort-pulse laser," in Lasers in Dentistry II, H. A. Wigdor, J. D. B. Featherstone, J. M. White, and J. Neev, eds., Proc. SPIE 2672, 222-230 (1996). [CrossRef]
  8. J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, "Femtosecond lasers as novel tool in dental surgery," Appl. Surf. Sci. 197-198, 737-740 (2002). [CrossRef] [PubMed]
  9. M. Frentzen and D. Hamrol, "Kavitätenpräperation mit dem Er:YAG-Laser-eine histologische Studie," Dtsch. Zahnärztl. Z. 55, 114-117 (2000). [PubMed]
  10. P. J. Pike, "Photo-acoustic analysis of dental materials and tissue," Ph.D. dissertation (University of Tennessee, Knoxville, TN, 2005).
  11. See, for example, a recent book on thermodynamics by S. R. Turns, Thermodynamics: Concepts & Applications (Cambridge University Press, 2006).
  12. E. G. Gamaly, B. Luther-Davis, and V. T. Tikhonchuk, "Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics," Phys. Plasmas 9, 949-957 (2002). [CrossRef]
  13. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (McGraw-Hill, 1968). [PubMed]
  14. T. Q. Qiu and C. L. Tien, "Size effects on nonequilibrium laser heating of metal films," J. Heat Transfer 115, 842-847 (1993). [CrossRef]
  15. A. N. Smith, J. L. Hostetler, and P. M. Norris, "Nonequilibrium heating in metal films: an analytical and numerical analysis," Num. Heat Transfer Part A 35, 859-873 (1999). [CrossRef] [PubMed]
  16. C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations (Prentice-Hall, 1971).
  17. "IMSL PDE/FORTRAN User's Manual," Edition 1.0 (IMSL, Houston, TX) 1986.
  18. A. A. Oraevsky, S. L. Jackues, and F. K. Tittel, "Determination of tissue optical properties by piezoelectric detection of laser-induced stress waves," Proc. SPIE 1882, 86-101 (1993). [CrossRef]
  19. E. H. Morriyama, R. A. Zangaro, A. B. Villaverde, and M. T. Pacheco, "Optothermal transfer simulation in laser-irradiated human dentin," J. Biomed. Opt. 8, 298-302 (2003). [CrossRef]
  20. W. Seka, D. Fried, J. D. B. Featherstone, and S. F. Borzillary, "Light deposition in dental hard tissue and simulated thermal response," J. Dent. Res. 74, 1086-1092 (1995). [CrossRef] [PubMed]
  21. B. Choi and A. J. Welch, "Analysis of thermal relaxation during laser irradiation of tissue," Las. Surg. Med. 29, 351-359 (2001). [CrossRef]
  22. F. Hirota and K. Furumoto, "Temperature rise caused by laser (CO2, Nd:YAG, Er:YAG) irradiation of teeth," Intl. Congr. Ser. 1248, 301-304 (2003). [CrossRef]
  23. M. H. Smith, R. L. Fork, and S. T. Cole, "Safe delivery of optical power from space," Opt. Express 8, 537-546 (2001). [CrossRef] [PubMed]
  24. Thermophysical dental data for enamel and dentin are taken from http://www.lib.umich.edu/dentlib/Dental_tables/toc.html.
  25. Thermal conductivity and specific heat data for porcelain are taken from http://www.engineeringtoolbox.com.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited