OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 1 — Jan. 29, 2008

Near-field scattered by a single nanoslit in a metal film

Lionel Aigouy, Philippe Lalanne, Haitao Liu, Gwénaelle Julié, Véronique Mathet, and Michel Mortier  »View Author Affiliations


Applied Optics, Vol. 46, Issue 36, pp. 8573-8577 (2007)
http://dx.doi.org/10.1364/AO.46.008573


View Full Text Article

Enhanced HTML    Acrobat PDF (1309 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a scanning near-field optical microscope, we visualize, in three dimensions, the electromagnetic field distribution near an isolated slit aperture in a thin gold film. At the metal-air interface and for a TM incident polarization, we confirm some recently observed results and show that the slit generates two kinds of surface waves: a slowly decaying surface plasmon polariton and a quasi-cylindrical wave that decreases more rapidly when moving away from the slit. These waves are not generated for a TE incident polarization. In a noncontact mode, we also observe how the transmitted light diverges in free space. At a small distance from the slit ( < 2 μ m ) , we find that the emerging light spreads in all directions for TM, forming an electromagnetic cloud, whereas it is concentrated above the slit for TE, forming a more directive light jet. The experimental images are in good agreement with the numerical simulations.

© 2007 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 27, 2007
Manuscript Accepted: October 22, 2007
Published: December 13, 2007

Virtual Issues
Vol. 3, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Lionel Aigouy, Philippe Lalanne, Haitao Liu, Gwénaelle Julié, Véronique Mathet, and Michel Mortier, "Near-field scattered by a single nanoslit in a metal film," Appl. Opt. 46, 8573-8577 (2007)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-46-36-8573


Sort:  Year  |  Journal  |  Reset  

References

  1. L. Yin, V. K. Vlasko-Vlasov, A. Rydh, J. Pearson, U. Welp, S.-H. Chang, S. K. Gray, G. C. Schatz, D. B. Brown, and W. C. Kinball, "Surface plasmons at single nanoholes in Au films," Appl. Phys. Lett. 85, 467-469 (2004). [CrossRef]
  2. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, "Focusing surface plasmons with a plasmonic lens," Nano. Lett. 5, 1726-1729 (2005). [CrossRef] [PubMed]
  3. H. Gao, J. Henzie, and T. W. Odom, "Direct evidence for surface plasmon-mediated enhanced light transmission through metallic nanohole arrays," Nano. Lett. 6, 2104-2108 (2006). [CrossRef] [PubMed]
  4. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, "Near-field analysis of surface waves launched at nanoslit apertures," Phys. Rev. Lett. 98, 153902 (2007). [CrossRef] [PubMed]
  5. G. Gay, B. V. de Lesegno, R. Mathevet, J. Weiner, H. J. Lezec, and T. W. Ebbesen, "Atomic fluorescence mapping of optical field intensity profiles issuing from nanostructured slits milled into subwavelength metallic layers," Appl. Phys. B 81, 871-874 (2005). [CrossRef]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  8. K. A. Tetz, L. Pang, and Y. Fainman, "High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance," Opt. Lett. 31, 1528-1530 (2006). [CrossRef] [PubMed]
  9. P. Lalanne and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nat. Phys. 2, 551-556 (2006). [CrossRef]
  10. G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, and H. J. Lezec, "Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry," Phys. Rev. Lett. 96, 213901 (2006). [CrossRef] [PubMed]
  11. F. Kalkum, G. Gay, O. Alloschery, J. Weiner, H. J. Lezec, Y. Xie, and M. Mansuripur, "Surface-wave interferometry on single subwavelength slit-groove structures fabricated on gold films," Opt. Express 15, 2613-2621 (2007). [CrossRef] [PubMed]
  12. H. F. Schouten, N. Kuzmin, G. Dubois, T. D. Visser, G. Gbur, P. F. A. Alkemade, H. Blok, G. W.'tHooft, D. Lenstra, and E. R. Elliel, "Plasmon-assisted two-slit transmission: Young's experiment revisited," Phys. Rev. Lett. 94, 053901 (2005). [CrossRef] [PubMed]
  13. B. Hecht, B. Sick, U. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, "Scanning near-field optical microscopy with aperture probes: fundamentals and applications," J. Chem. Phys. 112, 7761-7774 (2000). [CrossRef]
  14. A. Bouhelier, T. Huser, H. Tamaru, H.-J. Güntherodt, D. W. Pohl, F. I. Baida, and D. Van Labeke, "Plasmon optics of structured silver films," Phys. Rev. B 63, 155404 (2001). [CrossRef]
  15. J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, "Near-field observation of surface plasmon polariton propagation on thin metal stripes," Phys. Rev. B 64, 045411 (2001). [CrossRef]
  16. L. Aigouy, Y. De Wilde, and M. Mortier, "Local optical imaging of nanoholes using a single fluorescent rare-earth-doped glass particle as a probe," Appl. Phys. Lett. 83, 147-149 (2003). [CrossRef]
  17. H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404-406 (2002). [CrossRef]
  18. E. Verhagen, A. L. Tchebotareva, and A. Polman, "Erbium luminescence imaging of infrared surface plasmon polaritons," Appl. Phys. Lett. 88, 121121 (2006). [CrossRef]
  19. P. Lalanne, J. P. Hugonin, and J. C. Rodier, "Approximate model for surface-plasmon generation at slit apertures," J. Opt. Soc. Am. A 23, 1608-1615 (2006). [CrossRef]
  20. The gold permittivity is extracted from the tabulated data in E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985), Part II(1).
  21. L. Chen, J. T. Robinson, and M. Lipson, "Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface," Opt. Express 14, 12629-12636 (2006). [CrossRef] [PubMed]
  22. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, "Use of grating theories in integrated optics," J. Opt. Soc. Am. A 18, 2865-2875 (2001). [CrossRef]
  23. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, "Surface-topography-induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture," Appl. Phys. Lett. 84, 2040-2042 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited