OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Adjoint time domain method for fluorescent imaging in turbid media

Vadim Y. Soloviev, Cosimo D’Andrea, Marco Brambilla, Gianluca Valentini, Ralf B. Schulz, Rinaldo Cubeddu, and Simon R. Arridge  »View Author Affiliations


Applied Optics, Vol. 47, Issue 13, pp. 2303-2311 (2008)
http://dx.doi.org/10.1364/AO.47.002303


View Full Text Article

Enhanced HTML    Acrobat PDF (5350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Application of adjoint time domain methods to the inverse problem in 3D fluorescence imaging is a novel approach. We demonstrate the feasibility of this approach experimentally on the basis of a time gating technique completely in the time domain by using a small number of time windows. The evolution of the fluorescence energy density function inside a highly scattering cylinder was reconstructed together with optical parameters. Reconstructed energy density was used in localizing two fluorescent tubes. Relatively accurate reconstruction demonstrates the effectiveness and the potential of the proposed technique.

© 2008 Optical Society of America

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: October 25, 2007
Revised Manuscript: February 5, 2008
Manuscript Accepted: March 27, 2008
Published: April 28, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Vadim Y. Soloviev, Cosimo D'Andrea, Marco Brambilla, Gianluca Valentini, Ralf B. Schulz, Rinaldo Cubeddu, and Simon R. Arridge, "Adjoint time domain method for fluorescent imaging in turbid media," Appl. Opt. 47, 2303-2311 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-13-2303


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. T. N. Kumar, J. Skoch, B. J. Bacskai, D. A. Boas, and A. K. Dunn, “Fluorescence-lifetime-based tomography for turbid media,” Opt. Lett. 30, 3347-3349 (2005). [CrossRef]
  2. A. T. N. Kumar, S. B. Raymond, G. Boverman, D. A. Boas, and B. J. Bacskai, “Time resolved fluorescence tomography of turbid media based on lifetime contrast,” Opt. Express 14, 12255-12270 (2006), http://www.opticsexpress.org. [CrossRef] [PubMed]
  3. M. S. Patterson and B. W. Pogue, “Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues,” Appl. Opt. 33, 1963-1974 (1994). [CrossRef] [PubMed]
  4. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158-160 (1996). [CrossRef] [PubMed]
  5. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, “Fluorescence and absorption contrast mechanism for biomedical optical imaging using frequency domain techniques,” Photochem. Photobiol. 66, 55-64 (1997). [CrossRef] [PubMed]
  6. J. S. Reynolds, C. A. Thompson, K. J. Webb, F. P. LaPlant, and D. Ben-Amotz, “Frequency domain modeling of reradiation in highly scattering media,” Appl. Opt. 36, 2252-2259 (1997). [CrossRef] [PubMed]
  7. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, “Fluorescence optical diffusion tomography,” Appl. Opt. 42, 3081-3094 (2003). [CrossRef] [PubMed]
  8. A. Joshi, W. Bangerth, K. Hwan, J. C. Rasmussen, and E. M. Sevick-Muraca, “Fully adaptive FEM based fluorescence tomography from time-dependant measurements with area illumination and detection,” Med. Phys. 33, 1299-1310 (2006). [CrossRef] [PubMed]
  9. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. A. Neil, P. M. W. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time gated data acquisition,” Appl. Opt. 46, 7384-7391(2007). [CrossRef] [PubMed]
  10. V. Y. Soloviev, J. McGinty, K. B. Tahir, M. A. A. Neil, A. Sardini, J. V. Hajnal, S. R. Arridge, and P. M. W. French, “Fluorescence lifetime tomography of live cells expressing enhanced green fluorescent protein embedded in a scattering medium exhibiting background autofluorescence,” Opt. Lett. 32, 2034-2036 (2007). [CrossRef] [PubMed]
  11. V. Y. Soloviev, “Tomographic bioluminescence imaging with varying boundary conditions,” Appl. Opt. 46, 2778-2784(2007). [CrossRef] [PubMed]
  12. R. B. Schulz, J. Peter, W. Semmler, C. D'Andrea, G. Valentini, and R. Cubeddu, “Comparison of noncontact and fiber-based fluorescence-mediated tomography,” Opt. Lett. 31, 769-771 (2006). [CrossRef] [PubMed]
  13. J. Ripoll, R. B. Schulz, and V. Ntziachristos, “Free-space propagation of diffuse light: theory and experiments,” Phys. Rev. Lett. 91, 103901 (2003). [CrossRef] [PubMed]
  14. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  15. M Tadi, “Inverse heat conduction based on boundary measurement,” Inverse Probl. 13, 1585-1605 (1997). [CrossRef]
  16. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  17. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach to modelling photon transport in tissue,” Med. Phys. 20, 299-309 (1993). [CrossRef] [PubMed]
  18. C. D'Andrea, D. Comelli, A. Pifferi, A. Torricelli, G. Valentini, and R. Cubeddu, “Time-resolved optical imaging through turbid media using a fast data acquisition system based on a gated CCD camera,” J. Phys. D 36, 1675-1681 (2006). [CrossRef]
  19. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, “A submillimeter resolution fluorescence molecular imaging system for small animal imaging,” Med. Phys. 30, 901-911 (2003). [CrossRef] [PubMed]
  20. V. Y. Soloviev and L. V. Krasnosselskaia, “Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography,” Appl. Opt. 45, 2828-2837 (2006). [CrossRef] [PubMed]
  21. V. Y. Soloviev, “Mesh adaptation technique for Fourier-domain fluorescence lifetime imaging,” Med. Phys. 33, 4176-4183(2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited