OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Measurement of the enhanced evanescent fields of integrated waveguides for optical near-field sensing

Julia Hahn, Christian E. Rüter, Frank Fecher, Jürgen Petter, Detlef Kip, and Theo Tschudi  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2357-2360 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1463 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The sensitivity of an integrated optical sensing device can be enhanced by coating it with a high refractive index layer, while both incoupled intensity and spatial resolution are maintained. The potential for enhanced sensing is demonstrated using titanium indiffused waveguiding structures in LiNbO 3 coated with a TiO 2 film. To the best of our knowledge, it could be measured for the first time that the outcoupled intensity at the surface was enhanced by a factor of 12–15 while keeping the penetration depth of the evanescent field constant of the order of only a few tens of nanometers. The evanescent fields of the guided modes were measured and characterized with a scanning near-field optical microscope and are in accordance with the numerical simulations.

© 2008 Optical Society of America

OCIS Codes
(130.3730) Integrated optics : Lithium niobate
(230.3120) Optical devices : Integrated optics devices
(310.2785) Thin films : Guided wave applications
(180.4243) Microscopy : Near-field microscopy

ToC Category:
Integrated Optics

Original Manuscript: January 3, 2008
Revised Manuscript: April 2, 2008
Manuscript Accepted: April 4, 2008
Published: April 28, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Julia Hahn, Christian E. Rüter, Frank Fecher, Jürgen Petter, Detlef Kip, and Theo Tschudi, "Measurement of the enhanced evanescent fields of integrated waveguides for optical near-field sensing," Appl. Opt. 47, 2357-2360 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Boisdé and A. Harmer, Chemical and Biochemical Sensing with Optical Fibers and Waveguides (Artech House, 1996).
  2. R. E. Kunz, “Miniature integrated optical modules for chemical and biochemical sensing,” Sens. Actuators B 38, 13-28 (1997). [CrossRef]
  3. C. R. Lavers, K. Itoh, S. C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, and T. Stout, “Planar optical waveguides for sensing applications,” Sens. Actuators B 69, 85-95 (2000). [CrossRef]
  4. M. P. Petrov, A. V. Chamrai, A. S. Kozlov, and I. V. Ilichev, “Electrically controlled integrated optical filter,” Tech. Phys. Lett. 30, 120-122 (2004). [CrossRef]
  5. P. Arora, A. S. Kozlov, I. V. Ilichev, A. V. Chamray, V. M. Petrov, J. Petter, M. P. Petrov, and T. Tschudi, “Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying,” in Proceedings of the Conference on Lasers and Electro-Optics (CLEO, 2007), paper CMG 5.
  6. C. R. Taitt, G. P. Anderson, and F. S. Ligler, “Evanescent wave fluorescence biosensors,” Biosens. Bioelectron. 20, 2470-2487 (2005). [CrossRef]
  7. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991).
  8. F. de Fornel, Evanescent Waves (Springer, 2001).
  9. D. Axelrod, “Cell-substrate contacts illuminated by total internal reflection fluorescence,” J. Cell Biol. 89, 141-145 (1981). [CrossRef]
  10. M. Oheim, “Quantitative high-resolution fluorescence microscopy using evanescent-wave excitation,” Ph.D. dissertation (Universität Göttingen, 1998).
  11. G. R. Quigley, R. D. Harris, and J. S. Wilkinson, “Sensitivity enhancement of integrated optical sensors by use of thin high-index films,” Appl. Opt. 38, 6036-6039 (1999).
  12. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998). [CrossRef]
  13. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in photorefractive lithium niobate channel waveguides,” J. Phys. D 36, R1-R16 (2003). [CrossRef]
  14. J. Vollmer, J. P. Nisius, P. Hertel, and E. Krätzig, “Refractive-index profiles of LiNbO3-Ti waveguides,” Appl. Phys. A 32, 125-127 (1983). [CrossRef]
  15. U. Schlarp and K. Betzler, “Refractive index of lithium niobate as a function of temperature, wavelength and composition: a general fit,” Phys. Rev. B 48, 15613-15620 (1993). [CrossRef]
  16. P. Löbl, M. Huppertz, and D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72-79 (1994). [CrossRef]
  17. K. Karrai and R. D. Grober, “Piezoelectric tip-sample distance control for near field optical microscopes,” Appl. Phys. Lett. 66, 1842 (1995). [CrossRef]
  18. H. Edwards, L. Taylor, W. Duncan, and A. J. Melmed, “Fast, high-resolution atomic force microscopy using a quartz tuning fork as actuator and sensor,” J. Appl. Phys. 82, 980-984 (1997). [CrossRef]
  19. D. P. Tsai and Y. Y. Lu, “Tapping-mode tuning fork force sensing for near-field scanning optical microscopy,” Appl. Phys. Lett. 73, 2724-2727 (1998). [CrossRef]
  20. L. Salomon, F. de Fornel, and J. P. Goudennet, “Sample-tip coupling efficiencies of the photon-scanning tunneling microscope,” J. Opt. Soc. Am. A 8, 2009-2015 (1991).
  21. S. Tascu, P. Moretti, S. Kostritskii, and B. Jacquier, “Optical near-field measurements of guided modes in various processed LiNbO3 and LiTaO3 channel waveguides,” Opt. Mater. 24, 297-302 (2003). [CrossRef]
  22. A. L. Campillo, J. W. P. Hsu, C. A. White, and C. D. W. Jones, “Direct measurement of the guided modes in LiNbO3 waveguides,” Appl. Phys. Lett. 80, 2239-2241 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited