OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes

Xianghui Zeng, Fred Duewer, Michael Feser, Carson Huang, Alan Lyon, Andrei Tkachuk, and Wenbing Yun  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2376-2381 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (9762 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Single-bounce ellipsoidal and paraboloidal glass capillary focusing optics have been fabricated for use as condenser lenses for both synchrotron and tabletop x-ray microscopes in the x-ray energy range of 2.5 18 keV . The condenser numerical apertures (NAs) of these devices are designed to match the NA of x-ray zone plate objectives, which gives them a great advantage over zone plate condensers in laboratory microscopes. The fabricated condensers have slope errors as low as 20 μrad rms. These capillaries provide a uniform hollow-cone illumination with almost full focusing efficiency, which is much higher than what is available with zone plate condensers. Sub- 50 nm resolution at 8 keV x-ray energy was achieved by utilizing this high-efficiency condenser in a laboratory microscope based on a rotating anode generator.

© 2008 Optical Society of America

OCIS Codes
(180.7460) Microscopy : X-ray microscopy
(340.7440) X-ray optics : X-ray imaging
(340.7470) X-ray optics : X-ray mirrors

ToC Category:

Original Manuscript: January 30, 2008
Manuscript Accepted: March 27, 2008
Published: April 28, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Xianghui Zeng, Fred Duewer, Michael Feser, Carson Huang, Alan Lyon, Andrei Tkachuk, and Wenbing Yun, "Ellipsoidal and parabolic glass capillaries as condensers for x-ray microscopes," Appl. Opt. 47, 2376-2381 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Niemann, D. Rudolph, and G. Schmahl, “Soft x-ray imaging zone plates with large zone numbers for microscopic and spectroscopic applications,” Opt. Commun. 12, 160-163 (1974). [CrossRef]
  2. G. Denbeaux, P. Fischer, G. Schneider, J. A. Liddle, E. Anderson, A. Pearson, W. Chao, C. Larabell, M. Le Gros, and D. Attwood, “Full-field soft x-ray microscopy at the advanced light source,” Synchrotron Radiat. News 16, 16-21 (2003). [CrossRef]
  3. R. Medenwaldt and E. Uggerhøj, “Description of an x-ray microscope with 30 nm resolution,” Rev. Sci. Instrum. 69, 2974-2977 (1998). [CrossRef]
  4. G. C. Yin, M. T. Tang, Y. F. Song, F. R. Chen, K. S. Liang, F. W. Duewer, W. Yun, C. H. Ko, and H. P. Shieh, “Energy-tunable transmission x-ray microscope for differential contrast imaging with near 60 nm resolution tomography,” Appl. Phys. Lett. 88, 241115 (2006). [CrossRef]
  5. H. M. Hertz, G. A. Johansson, H. Stollberg, J. de Groot, O. Hemberg, A. Hotmberg, S. Rehbein, P. Jansson, F. Eriksson, and J. Birch, “Table-top x-ray microscopy: sources, optics and applications,” J. Phys. IV 104, 115-120 (2003).
  6. M. Feser, F. Duewer, S. Wang, D. Scott, A. Lyon, and W. Yun, “3-D x-ray microscopy using laboratory sources,” Microsc. Microanal. 10, 1036-1037 (2004). [CrossRef]
  7. C. A. Larabell and M. A. Le Gros, “X-ray tomography generates 3-D reconstruction of the yeast, saccharomyces cerevisiae, at 60-nm resolution,” Mol. Biol. Cell 15, 957-962 (2004). [CrossRef]
  8. J. Maser, B. Stephenson, R. Winarski, C. Benson, D. Shu, B. Lai, S. Vogt, and M. Holt, “Development of a hard x-ray nanoprobe beamline at the advanced photon source,” Microsc. Microanal. 11, 680-681 (2005). [CrossRef]
  9. G. Schneider and B. Niemann, “Cryo x-ray microscopy experiments with the x-ray microscope at BESSY,” in X-Ray Microscopy and Spectromicroscopy, J. Thieme, G. Schmahl, D. Rudolph, and E. Umbach, eds. (Springer-Verlag, 1998), pp. 25-34.
  10. K. Luening, P. Pianetta, W. Yun, E. Almeida, and M. van der Meulen, “A high resolution full field transmission x-ray microscope at SSRL,” AIP Conf. Proc. 879, 1333-1336 (2007).
  11. G. Schmahl, D. Rudolph, B. Niemann, P. Guttmann, J. Thieme, G. Schneider, C. David, M. Diehl, and T. Wilhein, “X-ray microscopy studies,” Optik (Jena) 93, 95-102 (1993).
  12. H. Stollberg, S. Yulin, P. A. C. Takman, and H. M. Hertz, “High-reflectivity Cr/S multilayer condenser for compact soft x-ray microscopy,” Rev. Sci. Instrum. 77, 123101 (2006). [CrossRef]
  13. C. Rau, V. Crecea, C.-P. Richter, K. M. Peterson, P. R. Jamian, U. Neuhausler, G. Schneider, X. Yu, P. V. Braun, T.-C. Chiang, and I. K. Robinson, “Imaging of micro- and nano-structures with hard x-rays,” Micro & Nano Lett. 2, 1-5 (2007). [CrossRef]
  14. F. Zernike, “Phase contrast, a new method for the microscopic observation of transparent objects,” Physica 9, 974-986(1942). [CrossRef]
  15. D. X. Balaic, K. A. Nugent, Z. Barnea, R. Garrett, and S. W. Wilkins, “Focusing of x-rays by total internal reflection from paraboloidally tapered glass capillary,” J. Synchrotron Radiat. 2, 296-299 (1995). [CrossRef] [PubMed]
  16. D. X. Balaic, Z. Barnea, K. A. Nugent, R. Garrett, R. F. Varghese, and S. W. Wilkins, “Protein crystal diffraction patterns using a capillary-focused synchrotron x-ray beam,” J. Synchrotron Radiat. 3, 289-295 (1996). [CrossRef] [PubMed]
  17. D. H. Bilderback and E. Fontes, “Glass capillary optics for making x-ray beams of 0.1 to 50 microns diameter,” AIP Conf. Proc. 417, 147-155 (1997).
  18. D. H. Bilderback, S. A. Hoffman, and D. J. Thiel, “Nanometer spatial resolution achieved in hard x-ray imaging and Laue diffraction experiments,” Science 263, 201-203 (1994). [CrossRef] [PubMed]
  19. D. H. Bilderback and R. Huang, “X-ray tests of microfocusing mono-capillary optic for protein crystallography,” Nucl. Instrum. Methods Phys. Res. A 467-468, 970-973 (2001). [CrossRef]
  20. P. Kirkpatrick and V. Baez, “Formation of optical images by x-rays,” J. Opt. Soc. Am. 38, 776-774 (1948). [CrossRef]
  21. H. Wolter, “Generalized Schwarzschild mirror systems with glancing incidence as optics for x-rays,” Ann. Phys. (Leipzig) 10, 286-295 (1952). [CrossRef]
  22. A. Takeuchi, S. Aoki, K. Yamamoto, H. Takano, N. Watanabe, and M. Ando, “Full-field x-ray fluorescence imaging microscope with a Wolter mirror,” Rev. Sci. Instrum. 71, 1279-1285 (2000). [CrossRef]
  23. O. Anderson, G. H. O. Daalderop, and K. Bange, “X-ray reflectivity investigations of glass surfaces produced by float and draw techniques,” Mikrochim. Acta 125, 63-67 (1997). [CrossRef]
  24. R. Huang and D. H. Bilderback, “Single-bounce monocapillaries for focusing synchrotron radiation: modeling, measurements and theoretical limits,” J. Synchrotron Radiat. 13, 74-84 (2006). [CrossRef]
  25. G. Hirsch, “Metal capillary optics: novel fabrication methods and characterization,” X-Ray Spectrom. 32, 229-238 (2003). [CrossRef]
  26. A. Tkachuk, M. Feser, H. Cui, F. Duewer, H. Chang, and W. Yun, “High-resolution x-ray tomography using laboratory sources,” Proc. SPIE 6318, 63181D-1 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited