OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 6 — Jun. 17, 2008

Non-tissue-like features in the time-of-flight distributions of plastic tissue phantoms

Luca Nardo, Adriano Brega, Maria Bondani, and Alessandra Andreoni  »View Author Affiliations

Applied Optics, Vol. 47, Issue 13, pp. 2477-2485 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1314 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We measure high-temporal-resolution time-of-flight distributions of picosecond laser pulses in the visible and near-infrared, scattered in the forward direction by solid and liquid phantoms, and compare them to those obtained by using ex vivo tissues. We demonstrate that time-of-flight distributions from solid phantoms made of Delrin, Nylon, and Teflon are modulated by ripples that are absent in the biological samples and disappear when the temporal and/or angular resolution of the measuring apparatus is decreased. This behavior prevents the use of such materials as tissue phantoms when spatial mode and time selection are required, such as in imaging methods exploiting early arriving photons.

© 2008 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.6930) Medical optics and biotechnology : Tissue

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 25, 2007
Revised Manuscript: February 8, 2008
Manuscript Accepted: March 27, 2008
Published: April 29, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Luca Nardo, Adriano Brega, Maria Bondani, and Alessandra Andreoni, "Non-tissue-like features in the time-of-flight distributions of plastic tissue phantoms," Appl. Opt. 47, 2477-2485 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D 36, R207-R227 (2003). [CrossRef]
  2. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825-840 (1997). [CrossRef] [PubMed]
  3. A. Pifferi, J. Swartling, E. Chikoidze, A. Torricelli, P. Taroni, A. Bassi, S. Andersson-Engels, and R. Cubeddu, “Spectroscopic time-resolved diffuse reflectance and transmittance measurements of the female breast at different interfiber distances,” J Biomed. Opt. 9, 1143-1151 (2004). [CrossRef] [PubMed]
  4. T. L. Troy and S. N. Thennadil, “Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm,” J. Biomed. Opt. 6, 167-176 (2001). [CrossRef] [PubMed]
  5. C. R. Simpson, M. Kohl, M. Essenpreis, and M. Cope, “Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique,” Phys. Med. Biol. 43, 2465-2478 (1998). [CrossRef] [PubMed]
  6. S. J. Matcher, M. Cope, and D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue-scattering coefficients between 760 and 900 nm measured with time-resolved spectroscopy,” Appl. Opt. 36, 386-396 (1997). [CrossRef] [PubMed]
  7. V. G. Peters, D. R. Wyman, M. S. Patterson, and G. L. Frank, “Optical properties of normal and diseased human breast tissues in the visible and near infrared,” Phys. Med. Biol. 35, 1317-1334 (1990). [CrossRef] [PubMed]
  8. J. C. Hebden, B. D. Price, A. P. Gibson, and G. Royle, “A soft deformable tissue-equivalent phantom for diffuse optical tomography,” Phys. Med. Biol. 51, 5581-5590 (2006). [CrossRef] [PubMed]
  9. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J Biomed. Opt. 11, 041102 (2006). [CrossRef] [PubMed]
  10. G. Mitic, J. Kölzer, J. Otto, E. Plies, G. Sölkner, and W. Zinth, “Time-gated transillumination of biological tissues and tissuelike phantoms,” Appl. Opt. 33, 6699-6710 (1994). [CrossRef] [PubMed]
  11. A. Andreoni, L. Nardo, A. Brega, and M. Bondani, “Optical profiles with 180 μm resolution of objects hidden in scattering media,” J. Appl. Phys. 101, 024921/1 (2007). [CrossRef]
  12. A. Andreoni, M. Bondani, A. Brega, F. Paleari, A. S. Spinelli, and G. Zambra, “Detection of nondelayed photons in the forward-scattering of picosecond pulses,” Appl. Phys. Lett. 84, 2457-2459 (2004). [CrossRef]
  13. H. Zhao, F. Gao, Y. Tanikawa, Y. Onodera, M. Ohmi, M. Haruna, and Y. Yamada, “Imaging of in vitro chicken leg using time-resolved near infrared optical tomography,” Phys. Med. Biol. 47, 1979-1993 (2002). [CrossRef] [PubMed]
  14. V. Sankaran, M. J. Everett, D. J. Maitland, J. T. Walsh Jr., “Comparison of polarized light propagation in biological tissue and phantoms,” Opt. Lett. 24, 1044-1046 (1999). [CrossRef]
  15. I. Delfino, M. Lepore, and P. L. Indovina, “Experimental tests of different solutions to the diffusion equation for optical characterization of scattering media by time-resolved transmittance,” Appl. Opt. 38, 4228-4236 (1999). [CrossRef]
  16. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Laser Surg. Med. 12, 510-519 (1992). [CrossRef]
  17. J. C. Haselgrove, N. G. Wang, and B. Chance, “Investigation of the nonlinear aspects of imaging through a highly scattering medium,” Med. Phys. 19, 17-23 (1992). [CrossRef] [PubMed]
  18. J. C. Hebden, D. J. Hall, and D. T. Delpy, “The spatial resolution performance of a time-resolved optical imaging system using temporal extrapolation,” Med. Phys. 22, 201-208 (1995). [CrossRef] [PubMed]
  19. M. R. Hee, J. A. Izatt, J. M. Jacobson, and J. G. Fujimoto, “Femtosecond transillumination optical coherence tomography,” Opt. Lett. 18, 950-952 (1993). [CrossRef] [PubMed]
  20. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769-771 (1991). [CrossRef] [PubMed]
  21. K. M. Yoo and R. R. Alfano, “Time-resolved coherent and incoherent components of forward light scattering in random media,” Opt. Lett. 15, 320-322 (1990). [CrossRef] [PubMed]
  22. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “A solid tissue phantom for photon migration studies,” Phys. Med. Biol. 42, 1971-1979 (1997). [CrossRef] [PubMed]
  23. M. Sundberg, T. Lindbergh, and T. Strömberg, “Monte Carlo simulations of backscattered light intensity from convex and concave surfaces with an optical fiber array sensor,” Proc. SPIE 6084, 608404 (2006). [CrossRef]
  24. K. Deka, M. B. MacMillan, A. V. Ouriadov, I. V. Mastikhin, J. J. Young, P. M. Glover, G. R. Ziegler, and B. J. Balcom, “Quantitative density profiling with pure phase encoding and a dedicated 1D gradient,” J. Magn. Reson. 178, 25-32 (2006). [CrossRef]
  25. W. Cong, K. Durairaj, L. V. Wang, and G. Wang, “A Born-type approximation method for bioluminescence tomography,” Med. Phys. 33, 679-686 (2006). [CrossRef] [PubMed]
  26. W. Cong, G. Wang, K. Durairaj, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express 13, 6756 (2005). [CrossRef] [PubMed]
  27. T. Binzoni, T. S. Leung, D. Boggett, and D. Delphy, “Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity,” Phys. Med. Biol. 48, 2527-2549 (2003). [CrossRef] [PubMed]
  28. S. Svanberg, “Some applications of ultrashort laser pulses in biology and medicine,” Meas. Sci. Technol. 12, 1777-1783 (2001) and references therein. [CrossRef]
  29. I. Gannot, R. F. Bonner, G. Gannot, P. C. Fox, P. D. Smith, and A. H. Gandjbakhche, “Optical simulations of a noninvasive technique for the diagnosis of diseased salivary glands in situ,” Med. Phys. 25, 1139-1144 (1998). [CrossRef] [PubMed]
  30. O. Jarlman, R. Berg, S. Andersson-Engels, S. Svanberg, and H. Pettersson, “Time-resolved white light transillumination for optical imaging,” Acta Radiologica 38, 185-189 (1997). [PubMed]
  31. R. Berg, S. Andersson-Engels, O. Jarlman, and S. Svanberg, “Time-gated viewing studies on tissuelike phantoms,” Appl. Opt. 35, 3432-3440 (1996). [CrossRef] [PubMed]
  32. S. Fantini, M. A. Franceschini, G. Gaida, E. Gratton, H. Jess, W. W. Mantulin, K. T. Moesta, P. M. Schlag, and M. Kaschke, “Frequency-domain optical mammography: edge effect corrections,” Med. Phys. 23, 149-157 (1996). [CrossRef] [PubMed]
  33. G. Harding, M. Newton, and J. Kosanetzky, “Energy-dispersive x-ray diffraction tomography,” Phys. Med. Biol. 35, 33-41 (1990). [CrossRef]
  34. M. Sun, C. Zhang, Z. Hao, and J. Tian, “Effect of surface roughness on determination of tissue optical properties obtained by diffusion approximation,” Appl. Opt. 46, 3649-3652 (2007). [CrossRef] [PubMed]
  35. J. L. Humm, D. Ballon, Y. C. Hu, S. Ruan, C. Chui, P. K. Tulipano, A. Erdi, J. Koutcher, K. Zakian, M. Urano, P. Zanzonico, C. Mattis, J. Dyke, Y. Chen, P Harrington, J. A. O'Donoghue, and C. C. Ling, “A stereotactic method for the three-dimensional registration of multi-modality biologic images in animals: NMR, PET, histology, and autoradiography,” Med. Phys. 30, 2303-2314 (2003). [CrossRef] [PubMed]
  36. M. Lualdi, A. Colombo, A. Mari, S. Tomatis, and R. Marchesini, “Development of simulated pigmented lesions in an optical skin-tissue phantom: experimental measurements in the visible and near infrared,” J. Laser Appl. 14, 122-127 (2002). [CrossRef]
  37. G. Le Tolguenec, F. Devaux, and E. Lantz, “Two-dimensional time-resolved direct imaging through thick biological tissues: a new step toward noninvasive medical imaging,” Opt. Lett. 24, 1047-1049 (1999). [CrossRef]
  38. B. B. Das, K. M. Yoo, and R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092-1094 (1993). [CrossRef] [PubMed]
  39. D. A. Benaron and D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463-1466 (1993). [CrossRef] [PubMed]
  40. J. A. Moon, R. Mahon, M. D. Duncan, and J. Reintjes, “Resolution limits for imaging through turbid media with diffuse light,” Opt. Lett. 18, 1591-1593 (1993). [CrossRef] [PubMed]
  41. A. L. Lacaita, M. Ghioni, and S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841-843 (1989). [CrossRef]
  42. A. A. Borovikov, G. N. Khlybov, and M. I. Yakushin, “Optical properties of Teflon at high temperatures,” J. Appl. Mech. Tech. Phys. 15, 516-520 (1976). [CrossRef]
  43. W. Becker, The bh TCSPC Handbook (Becker & Hickl GmbH, 2006).
  44. M. Wei, W. Davis, B. Urban, Y. Song, F. E. Porbeni, X. Wang, J. L. White, C. M. Balik, C. C. Rusa, J. Fox, and A. E. Tonelli, “Manipulation of Nylon-6 crystal structures with its α-Cyclodextrin inclusion complex,” Macromolecules 35, 8039-8044 (2002). [CrossRef]
  45. J. Puiggalì, L. Franco, C. Aleman, and J. A. Subirana, “Crystal structures of Nylon 5,6. A model with two hydrogen bond directions for Nylons derived from odd diamidines,” Macromolecules 31, 8540-8548 (1998). [CrossRef]
  46. Y. Li, D. Yan, and G. Zhang, “Crystalline structure and thermal behavior of Nylon-10,14,” J. Polym. Sci. B 41, 1422-1427 (2003). [CrossRef]
  47. M. Shimomura, Y. Maeda, and Y. Tanabe, “Mechanical properties of polyoxymethylene whiskers/polyoxymethylene resin composite films,” J. Mater. Sci. 24, 2245-2249 (1989). [CrossRef]
  48. E. S. Clark, “The crystal structure of polytetrafluoroethylene, forms I and IV,” J. Macr. Sci. B: Physics 45, 201-213 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited