OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 8 — Aug. 18, 2008

Low-threshold cavitation in water using IR laser pulse trains

G. I. Zheltov, V. A. Lisinetskii, A. S. Grabtchikov, and V. A. Orlovich  »View Author Affiliations


Applied Optics, Vol. 47, Issue 20, pp. 3549-3554 (2008)
http://dx.doi.org/10.1364/AO.47.003549


View Full Text Article

Enhanced HTML    Acrobat PDF (1565 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The low-temperature cavitational disruption by trains of laser pulses was demonstrated in water. The trains used in the experiment were generated by a Raman laser at a wavelength of 1626 nm . The mean value of the fragmentation threshold energy density per pulse in a train was estimated to be equal to 7.2 × 10 6 J / m 3 . The corresponding amplitude of the negative pressure had the order of 6 7 bars at a temperature jump of only about 2 ° C . This result opens up prospects for developing precision nonthermal cavitational laser surgery.

© 2008 Optical Society of America

OCIS Codes
(140.3530) Lasers and laser optics : Lasers, neodymium
(140.3550) Lasers and laser optics : Lasers, Raman
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 28, 2007
Revised Manuscript: June 3, 2008
Manuscript Accepted: June 13, 2008
Published: July 2, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Citation
G. I. Zheltov, V. A. Lisinetskii, A. S. Grabtchikov, and V. A. Orlovich, "Low-threshold cavitation in water using IR laser pulse trains," Appl. Opt. 47, 3549-3554 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-20-3549


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Oraevsky, S. Jacques, R. Esenaliev, and F. Tittel, “Pulsed laser ablation of soft tissues, gels and aqueous solutions at temperatures below 100 °C,” Lasers Surg. Med. 18, 231-240(1996). [CrossRef] [PubMed]
  2. F. Koenz, M. Frenz, H. Prastisto, H. Weber, A. Silenok, and V. Konov, “Starting mechanism of bubble formation induced by Ho:Tm:YAG laser in water,” Proc. SPIE 2624, 67-71 (1996). [CrossRef]
  3. G. Zheltov, V. Glazkov, A. Kirkovsky, and A. Podoltsev, “The action of 10−8-10−16 s laser pulses on biological tissues,” Lasers Life Sci. 4, 135-146 (1991).
  4. L. K. Zarembo and V. A. Krasil'nikov, Introduction to Nonlinear Acoustics (in Russian), (Nauka, 1966).
  5. G. I. Zheltov, A. S. Podoltsev, A. S. Rubanov, and A. I. Kirkovsky, “Pressure waves in biotissues irradiated by short laser pulses: mathematical model,” Proc. SPIE 2370, 482-484 (1995). [CrossRef]
  6. G. I. Zheltov, A. S. Podoltsev, A. I. Kirkovsky, and E. I. Vitkin, “Phenomenon of hydrodynamical cooling of biotissues irradiated by short laser pulses,” Proc. SPIE 2393, 142-147 (1995). [CrossRef]
  7. G. I. Zheltov, E. I. Vitkin, and A. S. Rubanov, “Acoustic response of multilayer biostructures to laser irradiation and the possibility of using it in surgery and diagnostics,” J. Appl. Spectrosc. 69, 626-630 (2002). [CrossRef]
  8. G. Zheltov, A. Rubanov, and E. Vitkin, “Thermoacoustic processes in pigmented biostructures irradiated by laser pulses,” Vestnik of the Foundation for Basic Research (in Russian) 3, 96-113 (2003).
  9. G. S. Bushman and F. S. Barnes, “Laser-generated thermoelastic shock wave in liquids,” J. Appl. Phys. 46, 2074-2082(1975). [CrossRef]
  10. A. Oraevsky and A. Karabutov, “Ultimate sensitivity of time-resolved opto-acoustic detection,” Proc. SPIE 3916, 1-12(2000).
  11. G. M. Hale and M. R. Querry, “Optical constants of water in the band from 0.2 μm to 200 μm,” Appl. Opt. 12, 552-563 (1973).
  12. M. J. Van Germet, G. W. Lucassen, and A. J. Welch, “Time constants in thermal laser medicine: distribution of time constant and thermal relaxation of tissue,” Phys. Med. Biol. 41, 1381-1399 (1966).
  13. D. H. Sliney and M. L. Wolbbarsht, Safety with Laser and Other Optical Sources: A Comprehensive Handbook (Plenum Publishing, 1980).
  14. R. Birngruber, F. Hillencamp, and V. P. Gabel, “Theoretical investigation of laser thermal retinal injury,” Health Phys. 48 (6), 781-796 (1985). [CrossRef] [PubMed]
  15. C. P. Cain and A. J. Welch, “Measured and predicted laser-induced temperature rises in the rabbit fundus,” Invest. Ophthal. 13, 60-70 (1974). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited