OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET inversion for retrieval by layer of aerosol optical and microphysical properties

Juan Cuesta, Pierre H. Flamant, and Cyrille Flamant  »View Author Affiliations


Applied Optics, Vol. 47, Issue 25, pp. 4598-4611 (2008)
http://dx.doi.org/10.1364/AO.47.004598


View Full Text Article

Enhanced HTML    Acrobat PDF (6069 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a so-called lidar and almucantar (LidAlm) algorithm that combines information provided by standard elastic backscatter lidar (i.e., calibrated attenuated backscatter coefficient profile at one or two wavelengths) and sunphotometer AERONET inversion of almucantar like measurements (i.e., column-integrated aerosol size distribution and refractive index). The purpose of the LidAlm technique is to characterize the atmospheric column by its different aerosol layers. These layers may be distinct or partially mixed, and they may contain different aerosol species (e.g., urban, desert, or biomass burning aerosols). The LidAlm synergetic technique provides the extinction and backscatter coefficient profiles, particle size distributions, and backscatter-to-extinction ratios for each aerosol layer. We present the LidAlm procedure and sensitivity studies. The applications are illustrated with examples of actual atmospheric conditions encountered in the Paris area.

© 2008 Optical Society of America

OCIS Codes
(280.1100) Remote sensing and sensors : Aerosol detection
(280.3640) Remote sensing and sensors : Lidar

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: March 4, 2008
Revised Manuscript: June 21, 2008
Manuscript Accepted: July 10, 2008
Published: August 28, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Juan Cuesta, Pierre H. Flamant, and Cyrille Flamant, "Synergetic technique combining elastic backscatter lidar data and sunphotometer AERONET inversion for retrieval by layer of aerosol optical and microphysical properties," Appl. Opt. 47, 4598-4611 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-25-4598


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, “Climate change 2001: the scientific basis,” in Intergovernmental Panel on Climate Change (Cambridge University Press, 2001), p. 8.
  2. B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET--A federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ. 66, 1-16 (1998), doi:10.1016/S0034-4257(98)00031-5. [CrossRef]
  3. O. Dubovik and M. D. King, “A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,” J. Geophys. Res. 105, 20673-20696 (2000). [CrossRef]
  4. J. M. Haywood, P. Francis, O. Dubovik, M. Glew, and B. N. Holben, “Comparison of aerosol size distributions, radiative properties and optical depths determined by aircraft observations and Sun photometers during SAFARI 2000,” J. Geophys. Res. 108, 8471 (2003), doi:10.1029/2002JD002250. [CrossRef]
  5. J. S. Reid, H. Halflidi, H. B. Maring, A. Smirnov, D. L. Savoie, S. S. Cliff, E. A. Reid, J. M. Livingston, M. M. Meier, O. Dubovik, and S.-C. Tsay, “Comparison of size and morphological measurements of coarse mode dust particles from Africa,” J. Geophys. Res. 108, 8593 (2003), doi:10.1029/2002JD002485. [CrossRef]
  6. M. Mallet, J. C. Roger, S. Despiau, O. Dubovik, and J. P. Putaud, “Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE,” Atmos. Res. 69, 73-97 (2003), doi:10.1016/j.atmosres.2003.07.001. [CrossRef]
  7. O. Dubovik, B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, and D. Tanre, “Variability of absorption and optical properties of key aerosol types observed in worldwide locations,” J. Atmos. Sci. 59,590-608 (2002), doi:10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2. [CrossRef]
  8. A. Papayannis, M. Alpers, D. Balis, J. Bösenberg, A. Chaikovsky, F. de Tomasi, A. Haagaard, V. Matthias, I. Mattis, V. Mitev, S. Nickovic, G. Pappalardo, J. Pelon, C. Perez, G. Pisani, S. Puchalski, D. Stoyanov, V. Rizi, L. Sauvage, V. Simeonov, T. Trickl, G. Vaughan, M. Wiegner, and A. Castahno, “Saharan dust outbreaks towards europe: 3 years of systematic observations by the european lidar network in the frame of the EARLINET project (2000-2003),” presented at the 22nd International Laser Radar Conference (ILRC 2004), Matera, Italy, 12-16 July 2004.
  9. J. Bösenberg, A. Ansmann, J. M. Baldasano, D. Balis, Ch. Böckmann, B. Calpini, A. Chaikovsky, P. Flamant, A. Hagard, V. Mitev, A. Papayannis, J. Pelon, D. Resendes, J. Schneider, N. Spinelli, Th. Trickl, G. Vaughan, G. Visconti, and M. Wiegner, “EARLINET: A European Aerosol Research lidar Network,” in Selected Papers of the 20th International Laser Radar Conference, A. Dabas, C. Loth, and J. Pelon, eds. (École Polytechnique, Palaiseau, France, 2001), pp. 155-158.
  10. D. M. Winker, W. H. Hunt, and M. J. McGill, “Initial performance assessmentof CALIOP,” Geophys. Res. Lett. 34, L19803 (2007), doi:10.1029/2007GL030135 [CrossRef]
  11. F. G. Fernald, B. M. Herman, and J. A. Reagan, “Determination of aerosol height distributions by lidar,” J. Appl. Meteorol. 11, 482-489 (1972). [CrossRef]
  12. F. G. Fernald, “Analysis of atmospheric lidar observations--Some comments,” Appl. Opt. 23, 652-653 (1984).
  13. E. J. Welton, K. J. Voss, H. R. Gordon, H. Maring, A. Smirnov, B. Holben, B. Schmid, J. M. Livingston, P. B. Russell, P. A. Durkee, P. Formenti, and M. O. Andreae, “Ground-based lidar measurements of aerosols during ACE-2: Instrument description, results, and comparisons with other ground-based and airborne measurements,” Tellus Ser. B 52, 636-651(2000), doi:10.1034/j.1600-0889.2000.00025.x. [CrossRef]
  14. C. Flamant, J. Pelon, P. Chazette, V. Trouillet, P. Quinn, R. Frouin, D. Bruneau, J.-F. Leon, T. Bates, J. Johnson, and J. Livingston, “Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic Ocean during an European pollution outbreak of ACE-2,” Tellus Ser. B 52, 662-667 (2000), doi:10.1034/j.1600-0889.2000.00083.x. [CrossRef]
  15. J. Pelon, C. Flamant, P. Chazette, J. F. Leon, D. Tanre, M. Sicard, and S. K. Satheesh, “Characterization of aerosol spatial distribution and optical properties over the Indian Ocean from airborne lidar and radiometry during INDOEX'99,” J. Geophys. Res. 107, 8029 (2001), doi: 10.1029/2001JD000402. [CrossRef]
  16. P. Chazette, “The monsoon aerosol extinction properties at Goa during INDOEX as measured with lidar,” J. Geophys. Res. 108, 4187 (2003), doi: 10.1029/2002JD002074 [CrossRef]
  17. C. Mätzler, “MATLAB Functions for Mie scattering and absorption,” IAP Res. Rep. No. 02-08 (Insitut fu¨r Angewandte, 2002).
  18. M. I. Mishchenko and L. D. Travis, “T-matrix computations of light scattering by large spheroidal particles,” Opt. Commun. 109, 16-21 (1994). [CrossRef]
  19. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Wiley-Interscience, 1984).
  20. C. Flamant, J. Pelon, P. H. Flamant, and P. Durand, “lidar determination of the entrainment zone thickness at the top of the unstable marine atmospheric boundary-layer,” Boundary-Layer Meteorol. 83, 247-284 (1997), doi:10.1023/A:1000258318944. [CrossRef]
  21. B. Hennemuth and A. Lammert, “Determination of the atmospheric boundary layer height from radiosonde and lidar backscatter,” Boundary-Layer Meteorol. 120, 181-200 (2006), doi:10.1007/s10546-005-9035-3. [CrossRef]
  22. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211-220 (1981).
  23. http://aeronet.gfsc.nasa.gov.
  24. O. Dubovik, A. Smirnov, B. N. Holben, M. D. King, Y. J. Kaufman, T. F. Eck, and I. Slutsker, “Accuracy assessments of aerosol optical properties retrieved from AERONET sun and sky-radiance,” J. Geophys. Res. 105, 9791-9806(2000), doi:10.1029/2000JD900040. [CrossRef]
  25. R. R. Barton and J. S. Ivey, Jr., “Nelder-Mead simplex modifications for simulation optimization,” Manage. Sci. 42, 954-973 (1996).
  26. C. Cattrall, J. Reagan, K. Thome, and O. Dubovik, “Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations,” J. Geophys. Res. 110, D10S11, (2005), doi:10.1029/2004JD005124. [CrossRef]
  27. O. Dubovik, A. Sinyuk, T. Lapyonok, B. N. Holben, M. I. Mishchenko, P. Yang, T. F. Eck, H. Volten, O. Munoz, B. Veihelmann, W. J. van der Zande, J.-F. Leon, M. Sorokin, and I. Slutsker, “Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust,” J. Geophys. Res. 111, D11208 (2006), doi:10.1029/2005JD006619. [CrossRef]
  28. M. I. Mishchenko, L. Travis, R. Kahn, and R. West, “Modeling phase functions for dustlike tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids,” J. Geophys. Res. 102, 16831-16847 (1997). [CrossRef]
  29. H. Volten, O. Munoz, E. Rol, J. F. de Haan, W. Vassen, J. W. Hovenier, K. Muinonen, and T. Nousiainen, “Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm,” J. Geophys. Res. 106, 17375-17401 (2001), doi:10.1029/2001JD900068. [CrossRef]
  30. G. Hänel, “The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air,” Adv. Geophys. 19, 73-188 (1976).
  31. H. Randriamiarisoa, P. Chazette, P. Couvert, and J. Sanak, “Relative humidity impact on aerosol parameters in a Paris suburban area,” Atmos. Chem. Phys. 6, 1389-1407 (2006).
  32. E. Weingartner, M. Gysel, and U. Baltensperger, “Hygroscopicity of aerosol particles at low temperatures, 1. New low-temperature H-TDMA instrument: set-up and first applications,” Environmental Science and Technology 36, 55-62 (2002). [CrossRef]
  33. G. A. D'Almeida, P. Koepke, and E. P. Shettle, Atmospheric Aerosols: Global Climatology and Radiative Characteristics (Deepak, 1991).
  34. D. Tanré, Y. J. Kaufman, B. N. Holben, B. Chatenet, A. Karnieli, F. Lavenu, L. Blarel, O. Dubovik, L. A. Remer, and A. Smirnov, “Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum,” J. Geophys. Res. 106, 18205-18217 (2001). [CrossRef]
  35. E. M. Patterson and B. H. Stockton, “Complex index of refraction between 300 and 700 nm for Saharan aerosols,” J. Geophys. Res. 82, 3153-3160 (1977). [CrossRef]
  36. E. P. Shettle and R. W. Fenn, “Models of aerosols of lower troposphere and the effect of humidity variations on their optical properties,” AFCRL Tech. Rep. 79 0214 (Air Force Cambridge Research Laboratory, 1979).
  37. J. S. Reid, T. F. Eck, S. A. Christopher, R. Koppmann, O. Dubovik, D. P. Eleuterio, B. N. Holben, E. A. Reid, and J. Zhang, “A review of biomass burning emissions part III: intensive optical properties of biomass burning particles,” Atmos. Chem. Phys. 5, 827-849 (2005).
  38. L. A. Remer, Y. J. Kaufman, B. N. Holben, A. M. Thompson, and D. McNamara, “Biomass burning aerosol size distribution and modelled optical properties,” J. Geophys. Res. 103, 31879-31891 (1998). [CrossRef]
  39. M. A. Yamasoe, Y. J. Kaufman, O. Dubovik, L. A. Remer, B. N. Holben, and P. Artaxo, “Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR-B,” J. Geophys. Res. 103, 31893-31902(1998). [CrossRef]
  40. B. E. Anderson, W. Grant, G. Gregory, E. Browell, J. Collins, G. Sachse, D. Bagwell, D. Blake, and N. Blake, “Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts,” J. Geophys. Res. 101, 24117-24137 (1996). [CrossRef]
  41. J. Lenoble, “The particulate matter from biomass burning: A tutorial and critical review of its radiative impact,” in Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications, J. S. Levine, ed. (MIT Press, 1991), pp. 381-386.
  42. J. Li and J. Mao, “Properties of atmospheric aerosols inverted from optical remote sensing,” Atmos. Environ. Part A , 24, 2517-2522 (1990). [CrossRef]
  43. D. Mueller, I. Mattis, U. Wandinger, and A. Ansmann, “Saharan dust over a central European EARLINET-AERONET site: Combined observations with Raman lidar and Sun photometer,” J. Geophys. Res. 108, 4345 (2003), doi:10.1029/2002JD002918. [CrossRef]
  44. P. Chazette, H. Randriamiarisoa, J. Sanak, P. Couvert, and C. Flamant, “Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program,” J. Geophys. Res. 110, D02206 (2005), doi:10.1029/2004JD004810. [CrossRef]
  45. http://arl.noaa.gov/ready/open/hysplit4.html.
  46. http://www.nrlmry.navy.mil/aerosol/.
  47. C. Loth, J. Cuesta, and P. H. Flamant, TReSS : “A transportable remote sensing station for atmospheric research & satellite validation,” presented at the 22nd International Laser Radar Conference (ILRC 2004), Matera, Italy, 12-16 July, 2004.
  48. J. Cuesta, P. H. Flamant, and C. Loth, “Nouvelle station d'observations transportable: lidar et radiomètres,” presented at the Atelier d'Instrumentation et Experimentation 2004, Paris, France, 12-16 March, 2004.
  49. O. Dubovik, B. N. Holben, T. Lapyonok, A. Sinyuk, M. I. Mischenko, P. Yang, and I. Slutsker, “Nonspherical aerosol retrieval method employing light scattering by spheroids,” Geophys. Res. Lett. 105, 9791-9806 (2002).
  50. http://www.airparif.asso.fr/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited