OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics

| EXPLORING THE INTERFACE OF LIGHT AND BIOMEDICINE

  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography

Xiaolu Li, Jae-Ho Han, Xuan Liu, and Jin U. Kang  »View Author Affiliations


Applied Optics, Vol. 47, Issue 27, pp. 4833-4840 (2008)
http://dx.doi.org/10.1364/AO.47.004833


View Full Text Article

Enhanced HTML    Acrobat PDF (2494 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present theoretical analysis and experimental verification of the signal to noise ratio (SNR) of a common-path interferometer-based optical coherence tomography (OCT) system. Based on fully integrated all-fiber implementation of a common-path time-domain OCT system, we derived the SNR of the system including the effect of beat noise, which turns out to be twice as large as the excess noise term. We verified the theoretical SNR through a series of experiments, utilizing both controlled phantom and biological samples such as a rat brain with tumor and a frog retina. The results showed that the source power and the reference reflectivity can be easily controlled to optimize the SNR of OCT imaging. We have also analyzed the effect of the fiber delays and the offset in the fiber autocorrelator of the common-path OCT system on the overall SNR.

© 2008 Optical Society of America

OCIS Codes
(030.4280) Coherence and statistical optics : Noise in imaging systems
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: March 18, 2008
Revised Manuscript: August 11, 2008
Manuscript Accepted: August 11, 2008
Published: September 11, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Xiaolu Li, Jae-Ho Han, Xuan Liu, and Jin U. Kang, "Signal-to-noise ratio analysis of all-fiber common-path optical coherence tomography," Appl. Opt. 47, 4833-4840 (2008)
http://www.opticsinfobase.org/vjbo/abstract.cfm?URI=ao-47-27-4833


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  2. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32, 6032-6042 (1993). [CrossRef] [PubMed]
  3. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Quantum Electron. 5, 1185-1192 (1999). [CrossRef]
  4. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Quantum Electron. 5, 1205-1215 (1999). [CrossRef]
  5. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography--principles and applications,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  6. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22, 1618-1620 (1997). [CrossRef]
  7. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and P. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26, 608-610 (2001). [CrossRef]
  8. Y. Teramura, M. Suekuni, and F. Kannari, “Two-dimensional optical coherence tomography using spectral domain interferometry,” J. Opt. A 2, 21-26 (2000). [CrossRef]
  9. W. Piyawattanmetha, L. Fan, S. Hsu, M. Fujino, M. C. Wu, P. R. Herz, A. D. Aguirre, Y. Chen, and J. G. Fujimoto, “Two-dimensional endoscopic MEMS scanner for high resolution optical coherence tomography,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CWS2.
  10. B. Hoeling, A. Fernandez, R. Haskell, E. Huang, W. Myers, D. Petersen, S. Ungersma, R. Wang, M. Williams, and S. Fraser “An optical coherence microscope for 3-dimensional imaging in developmental biology,” Opt. Express 6, 136-146 (2000). [CrossRef] [PubMed]
  11. C. Xi, D. Marks, S. Schlachter, W. Luo, and S. A. Boppart, “High-resolution three-dimensional imaging of biofilm development using optical coherence tomography,” J. Biomed. Opt. 11, 034001 (2006). [CrossRef]
  12. Y. Cheng and K. V. Larin, “In vivo two- and three-dimensional imaging of artificial and real fingerprints with optical coherence tomography,” IEEE Photon. Technol. Lett. 19, 1634-1636 (2007). [CrossRef]
  13. Z. Kam, D. A. Agard, and J. W. Sedat, “Three-dimensional microscopy in thick biological samples: a fresh approach for adjusting focus and correcting spherical aberration,” Bioimaging 5, 40-49 (1997). [CrossRef]
  14. G. J. Tearney, B. E. Bouma, S. A. Boppart, B. Golubovic, E. A. Swanson, and J. G. Fujimoto, “Rapid acquisition of in vivo biological images by use of optical coherence tomography,” Opt. Lett. 21, 1408-1410 (1996). [CrossRef] [PubMed]
  15. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical Biopsy in Human Urologic Tissue Using Optical Coherence Tomography,” J. Urol. 157, 1915-1919 (1997). [CrossRef] [PubMed]
  16. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811-1813 (1997). [CrossRef]
  17. A. M. Sergeev, V. M. Gelikonov, G. V. Gelikon, F. I. Feldchtein, R. V. Kuranov, and N. D. Gladkova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express. 1, 432-440 (1997). [CrossRef] [PubMed]
  18. J. G. Fujimoto, S. A. Boppart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82, 128-133 (1999). [PubMed]
  19. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999). [CrossRef]
  20. P. R. Herz, Y. Chen, A. D. Aguirre, J. G. Fujimoto, H. Mashimo, J. Schmitt, A. Koski, J. Goodnow, and C. Petersen, “Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography,” Opt. Express. 12, 3532-3542 (2004). [CrossRef] [PubMed]
  21. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31, 1076-1078 (2006). [CrossRef] [PubMed]
  22. A. B. Vakhtin, D. J. Kane, W. R. Wood, and K. A. Peterson, “Common-path interferometer for frequency-domain optical coherence tomography,” Appl. Opt. 42, 6953-6958 (2003). [CrossRef] [PubMed]
  23. U. Sharma, N. M. Fried, and J. U. Kang, “All-fiber Fizeau optical coherence tomography: sensitivity optimization and system analysis,” IEEE J. Quantum Electron. 11799-805(2005). [CrossRef]
  24. J. U. Kang and A. Rodriguez, “Fourier domain common-path fiber oct with tunable reference: analysis and optimization,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD)(Optical Society of America, 2007), paper JTuA55.
  25. Y. Yang, Z. Ding, J. Meng, L. Wu, Z. He, T. Wu, and M. Chen, “Common path endoscopic optical coherence tomography with outside path length compensation,” Proc. SPIE 6826, 68261S (2007). [CrossRef]
  26. U. Sharma and J. U. Kang, “Common-path optical coherence tomography with side-viewing bare fiber probe for endoscopic optical coherence tomography,” Rev. Sci. Instrum. 78, 113102(2007). [CrossRef] [PubMed]
  27. J. U. Kang and U. Sharma, “Measurement of applied force on cornea based on common-path optical coherence tomography with external contact reference,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2006), paper CTuG3.
  28. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, “Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning,” Opt. Lett. 32, 3453-3455 (2007). [CrossRef] [PubMed]
  29. D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90, 186-190 (2006). [CrossRef] [PubMed]
  30. K. W. Gossage, C. M. Smith, E. M. Kanter, L. P. Hariri, A. L. Stone, J. J. Rodriguez, S. K. Williams, and J. K. Barton, “Texture analysis of speckle in optical coherence tomography images of tissue phantoms,” Phys. Med. Biol. 51, 1563-1575 (2006). [CrossRef] [PubMed]
  31. B. Hofer, B. Povazay, and B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O (2007). [CrossRef]
  32. R. C. Haskell, D. Liao, A. E. Pivonka, T. L. Bell, B. R. Haberle, B. M. Hoeling, and D. C. Petersen, “Role of beat noise in limiting the sensitivity of optical coherence tomography,” J. Opt. Soc. Am. A 23, 2747-2755(2006). [CrossRef]
  33. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098-1108 (1998). [CrossRef]
  34. T. Yoshino, M. R. Ali, and B. C. Sarker, “Performance analysis of low-coherence interferometry, taking into consideration optical beat noise,” J. Opt. Soc. Am. B 22, 328-335 (2005). [CrossRef]
  35. W. Chen, R. S. Tucker, X. Yi, W. Shieh, and J. S. Evans, “Uncorrelated beat noise measurement for optical signal-to-noise ratio monitoring,” Opt. Commun. 4, 971-972 (2005).
  36. C. M. Sonnenschein and F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600-1604, (1971). [CrossRef] [PubMed]
  37. C. Flueraru, H. Kumazaki, S. Sherif, S. Chang, and Y. Mao, “Quadrature Mach-Zehnder interferometer with application in optical coherence tomography,” J. Opt. A 9, L5-L8 (2007). [CrossRef]
  38. K. Bizheva, B. Hermann, B. Považay, H. Sattmann, M. Mei, R. Holzwarth, M. Kempe, B. Zimmermann, H. Reitsamer, A. F. Fercher, and W. Drexler, “Imaging brain morphology with ultrahigh resolution optical coherence tomography,” Proc. SPIE 5140, 187-191 (2003). [CrossRef]
  39. C. K. Leung, D. W. Yick, Y. Y. Kwong, F. C. Li, D. Y. Leung, S. Mohamed, C. C. Tham, C. Chung-chai, and D. S. Lam, “Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography,” Br. J. Ophthalmol. 91, 340-344 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited