OSA's Digital Library

Virtual Journal for Biomedical Optics

Virtual Journal for Biomedical Optics


  • Editor: Gregory W. Faris
  • Vol. 3, Iss. 11 — Oct. 22, 2008

Comparative evaluation of two simple diffuse reflectance models for biological tissue applications

George Zonios, Ioannis Bassukas, and Aikaterini Dimou  »View Author Affiliations

Applied Optics, Vol. 47, Issue 27, pp. 4965-4973 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1017 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a comparative evaluation of two simple diffuse reflectance models for biological tissue applications. One model is based on a widely accepted and used in biomedical optics implementation of diffusion theory, and the other one is based on a semiempirical approach derived from basic physical principles. We test the models on tissue phantoms and on human skin, utilizing a standard six-around-one optical fiber probe for light delivery and collection. We show that both models are suitable for use with an optical fiber probe and illustrate the potential, applicability, and validity range of the models.

© 2008 Optical Society of America

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: April 15, 2008
Revised Manuscript: July 20, 2008
Manuscript Accepted: August 15, 2008
Published: September 17, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

George Zonios, Ioannis Bassukas, and Aikaterini Dimou, "Comparative evaluation of two simple diffuse reflectance models for biological tissue applications," Appl. Opt. 47, 4965-4973 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. W. Murphy, R. J. Webster, B. A. Turlach, C. J. Quirk, C. D. Clay, P. J. Heenan, and D. D. Sampson, “Toward the discrimination of early melanoma from common and dysplastic nevus using fiber optic diffuse reflectance spectroscopy,” J Biomed. Opt. 10, 064020 (2005). [CrossRef]
  2. V. K. Bhutani, G. R. Gourley, S. Adler, B. Kreamer, C. Dalin, and L. H. Johnson, “Noninvasive measurement of total serum bilirubin in a multiracial predischarge newborn population to assess the risk of severe hyperbilirubinemia,” Pediatrics 106, e17 (2000). [CrossRef]
  3. F. Koenig, R. Larne, H. Enquist, F. J. McGovern, K. T. Schomacker, N. Kollias, and T. F. Deutsch, “Spectroscopic measurement of diffuse reflectance for enhanced detection of bladder carcinoma,” Urology 51, 342-345 (1998). [CrossRef]
  4. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J Biomed. Opt. 5, 221-228(2000). [CrossRef]
  5. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995). [CrossRef]
  6. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. I. Theory,” Appl. Opt. 22, 2456-2462(1983).
  7. L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to modeling of fiber optic catheters,” Appl. Opt. 15, 2059-2067 (1976).
  8. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties,” Med. Phys. 19, 879-888 (1992). [CrossRef]
  9. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML--Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef]
  10. T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region,” Appl. Opt. 42, 2888-2896 (2003). [CrossRef]
  11. R. Zhang, W. Verkruysse, B. Choi, J. A. Viator, R. Jung, L. O. Svaasand LO, G. Aguilar, and J. S. Nelson, “Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms,” J Biomed. Opt. 10, 024030 (2005). [CrossRef]
  12. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38, 6628-6637 (1999). [CrossRef]
  13. G. Zonios, J. Bykowski, and N. Kollias, “Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy,” J. Invest. Dermatol. 117, 1452-1457 (2001). [CrossRef]
  14. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006). [CrossRef]
  15. W. J. Wiscombe, “Mie Scattering Calculations: Advances in Technique and Fast Vector Speed Computer Codes,” NCAR Technical Note, NCAR/TN-140+STR, National Center for Atmospheric Research, Boulder, Colorado (1979).
  16. O. W. Van Assendelft, Spectrophotometry of Haemoglobin Derivatives, (CC Thomas, 1970).
  17. M. Johns, C. A. Giller, D. C. German, and H. L. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828-4842 (2005). [CrossRef]
  18. G. M. Hale and M. R. Querry, “Optical-constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973). [CrossRef]
  19. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: a new method for noninvasive skin investigation and melanoma detection,” J Biomed. Opt. 13, 014017 (2008). [CrossRef]
  20. G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263-8268 (2008). [CrossRef]
  21. G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol. 53, 269-278 (2008). [CrossRef]
  22. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, and V. V. Tuchin, “Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm,” J. Phys. D 38, 2543-2555 (2005). [CrossRef]
  23. D. H. P. Schneiderheinze, T. R. Hillman, and D. D. Sampson, “Modified discrete particle model of optical scattering in skin tissue accounting for multiparticle scattering,” Opt. Express 15, 15002-15010 (2007). [CrossRef]
  24. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949-957 (1997). [CrossRef]
  25. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the Born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006). [CrossRef]
  26. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051-3053 (2005). [CrossRef]
  27. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310-1312(1996).
  28. D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998). [CrossRef]
  29. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29, 1087-1089 (2004). [CrossRef]
  30. R. Reif, O. A'Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317-7328(2007). [CrossRef]
  31. R. Graaff, A. C. M. Dassel, M. H. Koelink, F. F. M. Demul, J. G. Aarnoudse, and W. G. Zijlstra, “Optical properties of human dermis in vitro and in vivo,” Appl. Opt. 32, 435-447(1993).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited